SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Que Jr Lawrence) "

Sökning: WFRF:(Que Jr Lawrence)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johansson, Adam Johannes, 1976-, et al. (författare)
  • Observed enhancement of the reactivity of a biomimetic diiron complex by the addition of water - mechanistic insights from theoretical modeling
  • 2009
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 34, s. 6741-6750
  • Tidskriftsartikel (refereegranskat)abstract
    • The biomimetic diiron complex [FeIIIFeIV(m-O)2(5-Me3-TPA)2](ClO4)3 (TPA = tris(2- pyridylmethyl)amine) has been found to be capable of oxidizing 9,10-dihydroanthracene in a solution of acetonitrile. Addition of water up to 1 M makes the reaction 200 times faster, suggesting that the water molecule in some way activates the catalyst for more efficient substrate oxidation. It is proposed that the enhanced reactivity results from the coordination of a water molecule to the iron(III) half of the complex, converting the bis-m-oxo structure of the diiron complex to a ring-opened form where one of the bridging oxo groups is transformed into a terminal oxo group on iron(IV). The suggested mechanism is supported by DFT (B3LYP) calculations and transition state theory. Two different computational models of the diiron complex are used to model the hydroxylation of cyclohexane to cyclohexanol. Model 1 has a bis-m-oxo diiron core (diamond core) while model 2 represents the “open core” analogue with one bridging m-oxo group, a terminal oxo ligand on iron(IV), and a water molecule coordinated to iron(III). The computational results clearly suggest that the terminal oxo group is more reactive than the bridging oxo group. The free energy of activation is 7.0 kcal mol-1 lower for the rate limiting step when the oxidant has a terminal oxo group than when both oxo groups are bridging the irons.
  •  
2.
  • Bassan, Arianna, et al. (författare)
  • A Density Functional Study of a Biomimetic Non-Heme Iron Catalyst : Insights into Alkane Hydroxylation and Olefin Oxidation by a Formally HO-Fe(V)=O Oxidant
  • 2004
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 11:2, s. 692-705
  • Tidskriftsartikel (refereegranskat)abstract
    • The reactivity of [HO(tpa)FeVO] (TPA=tris(2-pyridylmethyl)amine), derived from OO bond heterolysis of its [H2O(tpa)FeIIIOOH] precursor, was explored by means of hybrid density functional theory. The mechanism for alkane hydroxylation by the high-valent iron–oxo species invoked as an intermediate in Fe(tpa)/H2O2 catalysis was investigated. Hydroxylation of methane and propane by HOFeVO was studied by following the rebound mechanism associated with the heme center of cytochrome P450, and it is demonstrated that this species is capable of stereospecific alkane hydroxylation. The mechanism proposed for alkane hydroxylation by HOFeVO accounts for the experimentally observed incorporation of solvent water into the products. An investigation of the possible hydroxylation of acetonitrile (i.e., the solvent used in the experiments) shows that the activation energy for hydrogen-atom abstraction by HOFeVO is rather high and, in fact, rather similar to that of methane, despite the similarity of the HCH2CN bond strength to that of the secondary CH bond in propane. This result indicates that the kinetics of hydrogen-atom abstraction are strongly affected by the cyano group and rationalizes the lack of experimental evidence for solvent hydroxylation in competition with that of substrates such as cyclohexane.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy