SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quidant R.) "

Sökning: WFRF:(Quidant R.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Volpe, Giovanni, 1979, et al. (författare)
  • Roadmap for optical tweezers
  • 2023
  • Ingår i: Journal of Physics-Photonics. - : IOP Publishing. - 2515-7647. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.
  •  
2.
  • Mestres, P., et al. (författare)
  • Unraveling the optomechanical nature of plasmonic trapping
  • 2016
  • Ingår i: Light: Science and Applications. - : Springer Science and Business Media LLC. - 2047-7538 .- 2095-5545. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Noninvasive and ultra-accurate optical manipulation of nanometer objects has recently gained interest as a powerful tool in nanotechnology and biophysics. Self-induced back-action (SIBA) trapping in nano-optical cavities has the unique potential for trapping and manipulating nanometer-sized objects under low optical intensities. However, thus far, the existence of the SIBA effect has been shown only indirectly via its enhanced trapping performances. In this article, we present the first time direct experimental evidence of the self-reconfiguration of the optical potential that is experienced by a nanoparticle trapped in a plasmonic nanocavity. Our observations enable us to gain further understanding of the SIBA mechanism and to determine the optimal conditions for boosting the performances of SIBA-based nano-optical tweezers.
  •  
3.
  • Schell, A. W., et al. (författare)
  • Investigation of the spectroscopic properties of single defects in hexagonal boron nitride
  • 2019
  • Ingår i: Optics InfoBase Conference Papers. - : OSA - The Optical Society. - 9781557528209
  • Konferensbidrag (refereegranskat)abstract
    • Among the quantum systems capable of emitting single photons, the class of recently discovered defects in hexagonal boron nitride (hBN) is especially interesting, as these defects offer much desired characteristics such as narrow emission lines and photostability [1]. Like for any new class of quantum emitters, the first challenges to solve are the understanding of their photophysics as well as to find ways to facilitate integration in photonics structures. Here, we will show our investigation of the optical transition in hBN with different methods: Employing excitation with a short laser pulse the emission properties in case of linear and non-linear excitation can be compared [2]. We find clear antibunching signals that prove the single emitter character in both excitation cases. To gain further knowledge, we also obtain saturation curves. From a comparison of one- and two-photon case insights about the level structure of the defects can be obtained. The possibility to perform two-photon excitation makes this single photon emitter an interesting candidate as a biosensor.
  •  
4.
  •  
5.
  • Yavas, O., et al. (författare)
  • Unravelling the Role of Electric and Magnetic Dipoles in Biosensing with Si Nanoresonators
  • 2019
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 13:4, s. 4582-4588
  • Tidskriftsartikel (refereegranskat)abstract
    • High refractive index dielectric nanoresonators are attracting much attention due to their ability to control both electric and magnetic components of light. Due to the combination of confined modes with reduced absorption losses, they have recently been proposed as an alternative to nanoplasmonic biosensors. In this context, we study the use of semirandom silicon nanocylinder arrays, fabricated with simple and scalable colloidal lithography for the efficient and reliable detection of biomolecules in biological samples. Interestingly, electric and magnetic dipole resonances are associated with two different transduction mechanisms: extinction decrease and resonance red shift. By contrasting both observables, we identify clear advantages in tracking changes in the extinction magnitude. Our data demonstrate that, despite its simplicity, the proposed platform is able to detect prostate-specific antigen in human serum with limits of detection meeting clinical needs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy