SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quijandría Fernando) "

Sökning: WFRF:(Quijandría Fernando)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agustí, A., et al. (författare)
  • Tripartite Genuine Non-Gaussian Entanglement in Three-Mode Spontaneous Parametric Down-Conversion
  • 2020
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 125:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that the states generated by a three-mode spontaneous parametric down-conversion (SPDC) interaction Hamiltonian possess tripartite entanglement of a different nature to other paradigmatic three-mode entangled states generated by the combination of two-mode SPDC interactions. While two-mode SPDC generates Gaussian states whose entanglement can be characterized by standard criteria based on two-mode quantum correlations, these criteria fail to capture the entanglement generated by three-mode SPDC. We use criteria built from three-mode correlation functions to show that the class of states recently generated in a superconducting-circuit implementation of three-mode SPDC ideally have tripartite entanglement, contrary to recent claims in the literature. These criteria are suitable for triple SPDC but we show that they fail to detect tripartite entanglement in other states which are known to possess it, which illustrates the existence of two fundamentally different notions of tripartite entanglement in three-mode continuous-variable systems.
  •  
2.
  • Ahmed, Shahnawaz, 1995, et al. (författare)
  • Gradient-Descent Quantum Process Tomography by Learning Kraus Operators
  • 2023
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 130:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems by learning a process representation using Kraus operators. The Kraus form ensures that the reconstructed process is completely positive. To make the process trace preserving, we use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators. Our ansatz uses a few Kraus operators to avoid direct estimation of large process matrices, e.g., the Choi matrix, for low-rank quantum processes. The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes, but shines by combining the best features of these two methods. Similar to CS (but unlike PLS), GD-QPT can reconstruct a process from just a small number of random measurements, and similar to PLS (but unlike CS) it also works for larger system sizes, up to at least five qubits. We envisage that the data-driven approach of GD-QPT can become a practical tool that greatly reduces the cost and computational effort for QPT in intermediate-scale quantum systems.
  •  
3.
  • Baust, A., et al. (författare)
  • Ultrastrong coupling in two-resonator circuit QED
  • 2016
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 93:21, s. Art. no. 214501-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on ultrastrong coupling between a superconducting flux qubit and a resonant mode of a system comprised of two superconducting coplanar stripline resonators coupled galvanically to the qubit. With a coupling strength as high as 17.5% of the mode frequency, exceeding that of previous circuit quantum electrodynamics experiments, we observe a pronounced Bloch-Siegert shift. The spectroscopic response of our multimode system reveals a clear breakdown of the Jaynes-Cummings approximation. In contrast to earlier experiments, the high coupling strength is achieved without making use of an additional inductance provided by a Josephson junction.
  •  
4.
  • Chang, C. W. Sandbo, et al. (författare)
  • Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity
  • 2018
  • Ingår i: Physical Review Applied. - 2331-7019. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by our parametrically pumping a multimode superconducting cavity. By combining different pump frequencies, applied simultaneously to the device, we can produce different entanglement structures in a programable fashion. The Gaussian output states are fully characterized by our measuring the full covariance matrices of the modes. The covariance matrices are absolutely calibrated by our using an in situ microwave calibration source, a shot-noise tunnel junction. Applying a variety of entanglement measures, we demonstrate both full inseparability and genuine tripartite entanglement of the states. Our method is easily extensible to more modes.
  •  
5.
  • Chang, C. W. S., et al. (författare)
  • Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity
  • 2020
  • Ingår i: Physical Review X. - 2160-3308. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneous parametric down-conversion (SPDC) has been a key enabling technology in exploring quantum phenomena and their applications for decades. For instance, traditional SPDC, which splits a high-energy pump photon into two lower-energy photons, is a common way to produce entangled photon pairs. Since the early realizations of SPDC, researchers have thought to generalize it to higher order, e.g., to produce entangled photon triplets. However, directly generating photon triplets through a single SPDC process has remained elusive. Here, using a flux-pumped superconducting parametric cavity, we demonstrate direct three-photon SPDC, with photon triplets generated in a single cavity mode or split between multiple modes. With strong pumping, the states can be quite bright, with flux densities exceeding 60 photons per second per hertz. The observed states are strongly non-Gaussian, which has important implications for potential applications. In the single-mode case, we observe a triangular star-shaped distribution of quadrature voltages, indicative of the long-predicted "star state." The observed state shows strong third-order correlations, as expected for a state generated by a cubic Hamiltonian. By pumping at the sum frequency of multiple modes, we observe strong three-body correlations between multiple modes, strikingly, in the absence of second-order correlations. We further analyze the third-order correlations under mode transformations by the symplectic symmetry group, showing that the observed transformation properties serve to "fingerprint" the specific cubic Hamiltonian that generates them. The observed non-Gaussian, third-order correlations represent an important step forward in quantum optics and may have a strong impact on quantum communication with microwave fields as well as continuous-variable quantum computation.
  •  
6.
  • Hillmann, Timo, 1995, et al. (författare)
  • Designing Kerr Interactions for Quantum Information Processing via Counterrotating Terms of Asymmetric Josephson-Junction Loops
  • 2022
  • Ingår i: Physical Review Applied. - 2331-7019. ; 17:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous-variable systems realized in high-coherence microwave cavities are a promising platform for quantum information processing. While strong dynamic nonlinear interactions are desired to implement fast and high-fidelity quantum operations, static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes. Here we study theoretical models of nonlinear oscillators describing superconducting quantum circuits with asymmetric Josephson-junction loops. Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation. We support our analytical results by numerical experiments and show that the effective Kerr-type couplings can be canceled by an interplay of higher-order nonlinearities. This can be better understood in a simplified model supporting only cubic and quartic nonlinearities. Our results show that a cubic interaction allows an increase in the effective rates of both linear and nonlinear operations without an increase in the undesired anharmonicity of an oscillator which is crucial for many bosonic encodings.
  •  
7.
  • Hillmann, Timo, 1995, et al. (författare)
  • Performance of Teleportation-Based Error-Correction Circuits for Bosonic Codes with Noisy Measurements
  • 2022
  • Ingår i: PRX Quantum. - 2691-3399. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Bosonic quantum error-correcting codes offer a viable direction towards reducing the hardware over-head required for fault-tolerant quantum information processing. A broad class of bosonic codes, namely rotation-symmetric codes, can be characterized by their phase-space rotation symmetry. However, their performance has been examined to date only within an idealistic noise model. Here, we further analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit. To this end, we numerically compute the average gate fidelity, including measurement errors into the noise model of the data qubit. Focusing on physical measurement models, we assess the performance of heterodyne and adaptive homodyne detection in comparison to the previously studied canonical phase measurement. This setting allows us to shed light on the role of different currently available measurement schemes when decoding the encoded information. We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential. In addition, we perform a detailed analysis of Gottesman-Kitaev-Preskill (GKP) codes using a similar error-correction circuit that allows us to analyze the effect of realistic measurement models on different codes. In comparison to RSB codes, we find for GKP codes an even greater reduction in performance together with a vulnerability to photon-number dephasing. Our results show that highly efficient measurement protocols constitute a crucial building block towards error-corrected quantum information processing with bosonic continuous-variable systems.
  •  
8.
  • Hillmann, Timo, 1995, et al. (författare)
  • Quantum error correction with dissipatively stabilized squeezed-cat qubits
  • 2023
  • Ingår i: Physical Review A. - 2469-9934 .- 2469-9926. ; 107:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Noise-biased qubits are a promising route toward significantly reducing the hardware overhead associated with quantum error correction. The squeezed-cat code, a nonlocal encoding in phase space based on squeezed coherent states, is an example of a noise-biased (bosonic) qubit with exponential error bias. Here we propose and analyze the error correction performance of a dissipatively stabilized squeezed-cat qubit. We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase-flip rate unchanged. Additionally, we find that the squeezing enables faster and higher-fidelity gates.
  •  
9.
  • Hillmann, Timo, 1995, et al. (författare)
  • Universal Gate Set for Continuous-Variable Quantum Computation with Microwave Circuits
  • 2020
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 125:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits. Such a universal set has been first proposed in quantum-optical setups, but its experimental implementation has remained elusive in that domain due to the difficulties in engineering strong nonlinearities. Here, we show that a realistic three-wave mixing microwave architecture based on the superconducting nonlinear asymmetric inductive element [Frattini et al. , Appl. Phys. Lett. 110 , 222603 (2017)] allows us to overcome this difficulty. As an application, we show that this architecture allows for the generation of a cubic phase state with an experimentally feasible procedure. This work highlights a practical advantage of microwave circuits with respect to optical systems for the purpose of engineering non-Gaussian states and opens the quest for continuous-variable algorithms based on few repetitions of elementary gates from the continuous-variable universal set
  •  
10.
  • Jolin, Shan Williams, et al. (författare)
  • Multipartite entanglement in a microwave frequency comb
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Significant progress has been made with multipartite entanglement of discrete qubits, but continuous variable systems may provide a more scalable path toward entanglement of large ensembles. We demonstrate multipartite entanglement in a microwave frequency comb generated by a Josephson parametric amplifier subject to a bichromatic pump. We find 64 correlated modes in the transmission line using a multifrequency digital signal processing platform. Full inseparability is verified in a subset of seven modes. Our method can be expanded to generate even more entangled modes in the near future. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy