SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quintana Gerard) "

Sökning: WFRF:(Quintana Gerard)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
2.
  • Abelev, Betty, et al. (författare)
  • Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
  •  
3.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
4.
  • Crone, Elizabeth E., et al. (författare)
  • Ability of Matrix Models to Explain the Past and Predict the Future of Plant Populations
  • 2013
  • Ingår i: Conservation Biology. - : Wiley. - 0888-8892 .- 1523-1739. ; 27:5, s. 968-978
  • Tidskriftsartikel (refereegranskat)abstract
    • Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. Habilidad de los Modelos Matriciales para Explicar el Pasado y Predecir el Futuro de las Poblaciones de Plantas Resumen La incertidumbre asociada con el pronostico ecologico ha sido reconocida durante un largo tiempo pero rara vez se cuantifica su seguridad. Evaluamos que tan bien la informacion de 82 poblaciones de 20 especies de plantas a lo largo de 3 continentes explica y predice la dinamica de poblacion de las plantas. Realizamos parametros con modelos matriciales con base en estadios con datos demograficos a partir de plantas marcadas individualmente y determinamos que tan bien estos modelos pronostican el tamano de las poblaciones al menos 5 anos en el futuro. Los modelos demograficos simples pronosticaron pobremente las dinamicas de poblacion; solamente el 40% de las poblaciones observadas cayo dentro de los limites de confianza de 85% de nuestros pronosticos. Estos modelos sin embargo explicaron la dinamica de poblacion a lo largo de los anos en los que se colectaron datos; los cambios observados en el tamano de la poblacion durante el periodo de colecta de datos estuvieron positivamente correlacionados con la tasa de crecimiento de la poblacion. Asi, estos modelos son por lo menos una manera segura de cuantificar el estado de la poblacion. Los pronosticos debiles no estuvieron asociados con el numero de plantas individuales o con los anos de datos. Probamos si las tasas vitales dependian de la densidad y encontramos que existe dependencia hacia la densidad tanto positiva como negativa, sin embargo la dependencia de densidad no se asocio con el error de pronostico. El error de pronostico estuvo significativamente asociado con diferencias ambientales entre la recoleccion de datos y los periodos de pronostico. Para predecir el destino de las poblaciones se necesitan modelos mas detallados, como aquellos que proyectan los cambios probables en el ambiente y como estos cambios afectaran a la dinamica de las poblaciones. Tales modelos tan detallados no siempre son factibles. Por ello puede ser mejor tomar decisiones aversas a riesgos que esperar pronosticos precisos de los modelos.
  •  
5.
  • Crone, Elizabeth E., et al. (författare)
  • How do plant ecologists use matrix population models?
  • 2011
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 14:1, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • P>Matrix projection models are among the most widely used tools in plant ecology. However, the way in which plant ecologists use and interpret these models differs from the way in which they are presented in the broader academic literature. In contrast to calls from earlier reviews, most studies of plant populations are based on < 5 matrices and present simple metrics such as deterministic population growth rates. However, plant ecologists also cautioned against literal interpretation of model predictions. Although academic studies have emphasized testing quantitative model predictions, such forecasts are not the way in which plant ecologists find matrix models to be most useful. Improving forecasting ability would necessitate increased model complexity and longer studies. Therefore, in addition to longer term studies with better links to environmental drivers, priorities for research include critically evaluating relative/comparative uses of matrix models and asking how we can use many short-term studies to understand long-term population dynamics.
  •  
6.
  • Jou-Claus, Sònia, et al. (författare)
  • Assessing the Fate of Benzophenone-Type UV Filters and Transformation Products during Soil Aquifer Treatment : The Biofilm Compartment as Bioaccumulator and Biodegrader in Porous Media
  • 2024
  • Ingår i: Environmental Science and Technology. - 0013-936X .- 1520-5851. ; 58:12, s. 5472-5482
  • Tidskriftsartikel (refereegranskat)abstract
    • The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4′-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2′-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds. 
  •  
7.
  • Scepanovic, Petar, et al. (författare)
  • Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines
  • 2018
  • Ingår i: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Humoral immune responses to infectious agents or vaccination vary substantially among individuals, and many of the factors responsible for this variability remain to be defined. Current evidence suggests that human genetic variation influences (i) serum immunoglobulin levels, (ii) seroconversion rates, and (iii) intensity of antigen-specific immune responses. Here, we evaluated the impact of intrinsic (age and sex), environmental, and genetic factors on the variability of humoral response to common pathogens and vaccines. Methods: We characterized the serological response to 15 antigens from common human pathogens or vaccines, in an age- and sex-stratified cohort of 1000 healthy individuals (Milieu Intérieur cohort). Using clinical-grade serological assays, we measured total IgA, IgE, IgG, and IgM levels, as well as qualitative (serostatus) and quantitative IgG responses to cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1 and 2, varicella zoster virus, Helicobacter pylori, Toxoplasma gondii, influenza A virus, measles, mumps, rubella, and hepatitis B virus. Following genome-wide genotyping of single nucleotide polymorphisms and imputation, we examined associations between ~5 million genetic variants and antibody responses using single marker and gene burden tests. Results: We identified age and sex as important determinants of humoral immunity, with older individuals and women having higher rates of seropositivity for most antigens. Genome-wide association studies revealed significant associations between variants in the human leukocyte antigen (HLA) class II region on chromosome 6 and anti-EBV and anti-rubella IgG levels. We used HLA imputation to fine map these associations to amino acid variants in the peptide-binding groove of HLA-DRβ1 and HLA-DPβ1, respectively. We also observed significant associations for total IgA levels with two loci on chromosome 2 and with specific KIR-HLA combinations. Conclusions: Using extensive serological testing and genome-wide association analyses in a well-characterized cohort of healthy individuals, we demonstrated that age, sex, and specific human genetic variants contribute to inter-individual variability in humoral immunity. By highlighting genes and pathways implicated in the normal antibody response to frequently encountered antigens, these findings provide a basis to better understand disease pathogenesis.
  •  
8.
  • Sunyer-Caldú, Adrià, 1992-, et al. (författare)
  • Factors driving PPCPs uptake by crops after wastewater irrigation and human health implications
  • 2023
  • Ingår i: Environmental Research. - 0013-9351 .- 1096-0953. ; 237
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, water scarcity affects more than three billion people. Nevertheless, the volume of treated wastewater discharged into the environment is estimated to exceed 100 m3 per inhabitant/year. These water resources are regularly used in agriculture worldwide to overcome water shortages. Such a practice, however, entails the uptake of waterborne pollutants, such as pharmaceuticals and personal care products (PPCPs), by crops and their further access to the food web, constituting an additional route of human exposure to PPCPs, with potential health outcomes.In this study, the occurrence of 56 PPCPs in tomatoes, lettuce, and carrot, together with soil and irrigation water, was evaluated using a QuEChERS-based methodology for extraction and LC-MS/MS for analysis. The influence of the selected cultivation conditions on the plant uptake levels of PPCPs was assessed. Two irrigation water qualities (secondary and tertiary treatment effluents), two soil compositions (sandy and clayey), two irrigation systems (dripping and sprinkling), and three crop types (lettuce, tomato, and carrot) were tested. Carrots showed the highest load of PPCPs (7787 ng/g dw), followed by tomatoes (1692 ng/g dw) and lettuces (1248 ng/g dw). The most translocated PPCPs were norfluoxetine (fluoxetine antidepressant main metabolite) (521 ng/g dw), and the anti-inflammatory diclofenac (360 ng/g dw). Nine PPCPs, are reported to be accumulated in crops for the first time. Water quality was the most important factor for reducing PPCPs' plant uptake. Overall, the best conditions for reducing PPCP uptake by crops were irrigation with reclaimed water by sprinkling in soils with higher clay content. The risk assessment performed revealed that the crops' consumption posed no risk to human health. This study serves as the first comprehensive assessment of the relevance of diverse cultivation factors on PPCPs' plant uptake under field agricultural practices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy