SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qureshi Shahnawaz) "

Sökning: WFRF:(Qureshi Shahnawaz)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsolai, Hadeel, et al. (författare)
  • A Systematic Review of Literature on Automated Sleep Scoring
  • 2022
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 10, s. 79419-79443
  • Forskningsöversikt (refereegranskat)abstract
    • Sleep is a period of rest that is essential for functional learning ability, mental health, and even the performance of normal activities. Insomnia, sleep apnea, and restless legs are all examples of sleep-related issues that are growing more widespread. When appropriately analyzed, the recording of bio-electric signals, such as the Electroencephalogram, can tell how well we sleep. Improved analyses are possible due to recent improvements in machine learning and feature extraction, and they are commonly referred to as automatic sleep analysis to distinguish them from sleep data analysis by a human sleep expert. This study outlines a Systematic Literature Review and the results it provided to assess the present state-of-the-art in automatic analysis of sleep data. A search string was organized according to the PICO (Population, Intervention, Comparison, and Outcome) strategy in order to determine what machine learning and feature extraction approaches are used to generate an Automatic Sleep Scoring System. The American Academy of Sleep Medicine and Rechtschaffen & Kales are the two main scoring standards used in contemporary research, according to the report. Other types of sensors, such as Electrooculography, are employed in addition to Electroencephalography to automatically score sleep. Furthermore, the existing research on parameter tuning for machine learning models that was examined proved to be incomplete. Based on our findings, different sleep scoring standards, as well as numerous feature extraction and machine learning algorithms with parameter tuning, have a high potential for developing a reliable and robust automatic sleep scoring system for supporting physicians. In the context of the sleep scoring problem, there are evident gaps that need to be investigated in terms of automatic feature engineering techniques and parameter tuning in machine learning algorithms.
  •  
2.
  • Alsolai, Hadeel, et al. (författare)
  • Employing a Long-Short-Term Memory Neural Network to Improve Automatic Sleep Stage Classification of Pharmaco-EEG Profiles
  • 2022
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing problem in today's society is the spiraling number of people suffering from various sleep disorders. The research results presented in this paper support the use of a novel method that employs techniques from the classification of sleep disorders for more accurate scoring. Applying this novel method will assist researchers with better analyzing subject profiles for recommending prescriptions or to alleviate sleep disorders. In biomedical research, the use of animal models is required to experimentally test the safety and efficacy of a drug in the pre-clinical stage. We have developed a novel LSTM Recurrent Neural Network to process Pharmaco-EEG Profiles of rats to automatically score their sleep-wake stages. The results indicate improvements over the current methods; for the case of combined channels, the model accuracy improved by 1% and 3% in binary or multiclass classifications, respectively, to accuracies of 93% and 82%. In the case of using a single channel, binary and multiclass LSTM models for identifying rodent sleep stages using single or multiple electrode positions for binary or multiclass problems have not been evaluated in prior literature. The results reveal that single or combined channels, and binary or multiclass classification tasks, can be applied in the automatic sleep scoring of rodents.
  •  
3.
  • Qureshi, Shahnawaz, et al. (författare)
  • Evaluation of Classifiers for Emotion Detection while Performing Physical and Visual Tasks : Tower of Hanoi and IAPS
  • 2018
  • Ingår i: Intelligent Systems and Applications. IntelliSys 2018. - Cham : Springer. - 9783030010539 - 9783030010546 ; , s. 347-363
  • Konferensbidrag (refereegranskat)abstract
    • With the advancement in robot technology, smart human-robot interaction is of increasing importance for allowing the more excellent use of robots integrated into human environments and activities. If a robot can identify emotions and intentions of a human interacting with it, interactions with humans can potentially become more natural and effective. However, mechanisms of perception and empathy used by humans to achieve this understanding may not be suitable or adequate for use within robots. Electroencephalography (EEG) can be used for recording signals revealing emotions and motivations from a human brain. This study aimed to evaluate different machine learning techniques to classify EEG data associated with specific affective/emotional states. For experimental purposes, we used visual (IAPS) and physical (Tower of Hanoi) tasks to record human emotional states in the form of EEG data. The obtained EEG data processed, formatted and evaluated using various machine learning techniques to find out which method can most accurately classify EEG data according to associated affective/emotional states. The experiment confirms the choice of a method for improving the accuracy of results. According to the results, Support Vector Machine was the first, and Regression Tree was the second best method for classifying EEG data associated with specific affective/emotional states with accuracies up to 70.00% and 60.00%, respectively. In both tasks, SVM was better in performance than RT. 
  •  
4.
  • Sohaib, Ahmad Tauseef, et al. (författare)
  • Evaluating classifiers for emotion recognition using EEG
  • 2013
  • Ingår i: Foundations of Augmented Cognition. - Las Vegas : Springer. - 9783642394539 - 9783642394546 ; , s. 492-501
  • Konferensbidrag (refereegranskat)abstract
    • There are several ways of recording psychophysiology data from humans, for example Galvanic Skin Response (GSR), Electromyography (EMG), Electrocardiogram (ECG) and Electroencephalography (EEG). In this paper we focus on emotion detection using EEG. Various machine learning techniques can be used on the recorded EEG data to classify emotional states. K-Nearest Neighbor (KNN), Bayesian Network (BN), Artificial Neural Network (ANN) and Support Vector Machine (SVM) are some machine learning techniques that previously have been used to classify EEG data in various experiments. Five different machine learning techniques were evaluated in this paper, classifying EEG data associated with specific affective/emotional states. The emotions were elicited in the subjects using pictures from the International Affective Picture System (IAPS) database. The raw EEG data were processed to remove artifacts and a number of features were selected as input to the classifiers. The results showed that it is difficult to train a classifier to be accurate over large datasets (15 subjects) but KNN and SVM with the proposed features were reasonably accurate over smaller datasets (5 subjects) identifying the emotional states with an accuracy up to 77.78%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy