SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qvarlander Sara Teknisk doktor 1982 ) "

Sökning: WFRF:(Qvarlander Sara Teknisk doktor 1982 )

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birnefeld, Johan, et al. (författare)
  • Cerebral blood flow assessed with phase-contrast magnetic resonance imaging during blood pressure changes with noradrenaline and labetalol : a trial in healthy volunteers 
  • 2024
  • Ingår i: Anesthesiology. - : Wolters Kluwer. - 0003-3022 .- 1528-1175. ; 140:4, s. 669-678
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adequate cerebral perfusion is central during general anesthesia. However, perfusion is not readily measured bedside. Clinicians currently rely mainly on MAP as a surrogate even though the relationship between blood pressure and cerebral blood flow is not well understood. The aim of this study was to apply phase contrast MRI to characterize blood flow responses in healthy volunteers to commonly used pharmacological agents that increase or decrease arterial blood pressure.Methods: Eighteen healthy volunteers aged 30-50 years were investigated with phase contrast MRI. Intraarterial blood pressure monitoring was used. First, intravenous noradrenaline was administered to a target MAP of 20% above baseline. After a wash-out period, intravenous labetalol was given to a target MAP of 15% below baseline. Cerebral blood flow was measured using phase contrast MRI and defined as the sum of flow in the internal carotid arteries and vertebral arteries. CO was defined as the flow in the ascending aorta.Baseline median cerebral blood flow was 772 ml/min (interquartile range, 674 to 871), and CO was 5,874 ml/min (5,199 to 6,355). The median dose of noradrenaline was 0.17 µg · kg−1 · h−1 (0.14 to 0.22). During noradrenaline infusion, cerebral blood flow decreased to 705 ml/min (606 to 748; P = 0.001), and CO decreased to 4,995 ml/min (4,705 to 5,635; P = 0.01). A median dose of labetalol was 120 mg (118 to 150). After labetalol boluses, cerebral blood flow was unchanged at 769 ml/min (734 to 900; P = 0.68). CO increased to 6,413 ml/min (6,056 to 7,464; P = 0.03).Conclusion: In healthy awake subjects, increasing MAP using intravenous noradrenaline decreased cerebral blood flow and CO. This data does not support inducing hypertension with noradrenaline to increase cerebral blood flow. Cerebral blood flow was unchanged when decreasing MAP using labetalol.
  •  
2.
  •  
3.
  • Birnefeld, Johan, 1989- (författare)
  • Cerebral hemodynamics in stroke, cerebral small vessel disease and pharmacological interventions : a 4D flow MRI study
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background and aim: Current cerebrovascular imaging techniques provide important information on arterial anatomy and structural pathologies, such as stenoses and occlusions, but physicians are left to infer how the blood flow is affected. In addition, the relationship between blood pressure and cerebral blood flow is complex and poorly understood. Increased transmission of cardiac pulsatility to the cerebral microvasculature has been suggested as a causative factor of cerebral small vessel disease (CSVD) but previous research have yielded conflicting results regarding this relationship. 4D flow magnetic resonance imaging (MRI) is a novel and promising technique enabling time-resolved blood flow quantification with whole-brain coverage and relatively short scan times. However, despite its obvious potential, there is not yet an evidence-based application for the use of 4D flow MRI within stroke or CSVD. This dissertation aimed to apply 4D flow MRI to describe blood flow patterns in posterior circulation stroke and cerebral blood flow responses to common pharmacological agents used to alter arterial blood pressure as well as to examine the relationship between cerebral arterial pulsatility and CSVD.Methods and Results: This doctoral dissertation consisted of four papers, referred to by roman numerals. 4D flow MRI and computed tomography angiography (CTA) were applied in 25 patients with acute ischemic stroke in the posterior circulation and a reference population of 15 healthy elderly (paper I). Individual flow profiles were created for each stroke patient and hemodynamic disturbances as well as collateral compensation were described. We show that hemodynamic findings were related to structural findings from CTA.The cross-sectional relationship between cerebral arterial pulsatility (quantified using 4D flow MRI as pulsatility index [PI] and flow volume pulsatility [FVP]) and features of CSVD were examined using regression analysis in 89 patients with acute ischemic stroke (paper II) and a population-based sample of 862 elderly (paper III). Internal carotid artery FVP was associated with increasing white matter hyperintensity (WMH) volume in patients with stroke and TIA (paper II). In addition, increasing middle cerebral artery FVP and PI were associated with worse cognitive function. In the population sample, high FVP and PI were associated with increasing WMH volume, lower brain volume and the presence of lacunes, but not the composite MRI-CSVD (paper III). Among subjects with MRI-CSVD, displaying symptoms consistent with cerebral small vessel disease was associated with higher WMH volume, lower brain volume and active smoking, but not any measure of pulsatility.Eighteen healthy volunteers were administered noradrenaline to increase mean arterial pressure by 20% above baseline, and labetalol to decrease mean arterial pressure to 15% below baseline (paper IV). Cerebral blood flow was measured using phase-contrast MRI at each blood pressure level and compared to baseline. Despite a marked increase in blood pressure, noradrenaline administration caused a reduction in cerebral blood flow and cardiac output. Meanwhile, labetalol administration caused no change in cerebral blood flow but an increased cardiac output.Conclusions: 4D flow MRI can detect hemodynamic disturbances and discriminate between hemodynamic disturbances and normal flow in patients with structural vascular pathologies. This additional information compared to structural imaging alone could potentially be used for prognosis and selection for procedures in clinical care. Cerebral arterial pulsatility is modestly associated with several MRI and clinical features of CSVD but not all. Cerebral arterial pulsatility as the main risk factor of CSVD seems unlikely but its involvement in the pathophysiology cannot be ruled out. Raising the blood pressure with noradrenaline decreases cerebral blood flow and cardiac output without any redistribution from peripheral to cerebral flow. This highlights the pitfalls of using blood pressure as a surrogate for cerebral blood flow and questions the validity of our understanding of cerebral autoregulation. Lowering the blood pressure with labetalol does not affect cerebral blood flow, reassuring its use in clinical routine. 4D flow MRI can be integrated into an in-patient work-up in selected cases of acute ischemic stroke and into the workflow of large epidemiological studies.
  •  
4.
  • Björnfot, Cecilia, et al. (författare)
  • Assessing cerebral arterial pulse wave velocity using 4D flow MRI
  • 2021
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 41:10, s. 2769-2777
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial arterial stiffening is a potential early marker of emerging cerebrovascular dysfunction and could be mechanistically involved in disease processes detrimental to brain function via several pathways. A prominent consequence of arterial wall stiffening is the increased velocity at which the systolic pressure pulse wave propagates through the vasculature. Previous non-invasive measurements of the pulse wave propagation have been performed on the aorta or extracranial arteries with results linking increased pulse wave velocity to brain pathology. However, there is a lack of intracranial “target-organ” measurements. Here we present a 4D flow MRI method to estimate pulse wave velocity in the intracranial vascular tree. The method utilizes the full detectable branching structure of the cerebral vascular tree in an optimization framework that exploits small temporal shifts that exists between waveforms sampled at varying depths in the vasculature. The method is shown to be stable in an internal consistency test, and of sufficient sensitivity to robustly detect age-related increases in intracranial pulse wave velocity.
  •  
5.
  • Björnfot, Cecilia, et al. (författare)
  • Cerebral arterial stiffness is linked to white matter hyperintensities and perivascular spaces in older adults : a 4D flow MRI study
  • 2024
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016.
  • Tidskriftsartikel (refereegranskat)abstract
    • White matter hyperintensities (WMH), perivascular spaces (PVS) and lacunes are common MRI features of small vessel disease (SVD). However, no shared underlying pathological mechanism has been identified. We investigated whether SVD burden, in terms of WMH, PVS and lacune status, was related to changes in the cerebral arterial wall by applying global cerebral pulse wave velocity (gcPWV) measurements, a newly described marker of cerebral vascular stiffness. In a population-based cohort of 190 individuals, 66–85 years old, SVD features were estimated from T1-weighted and FLAIR images while gcPWV was estimated from 4D flow MRI data. Additionally, the gcPWV’s stability to variations in field-of-view was analyzed. The gcPWV was 10.82 (3.94) m/s and displayed a significant correlation to WMH and white matter PVS volume (r = 0.29, p < 0.001; r = 0.21, p = 0.004 respectively from nonparametric tests) that persisted after adjusting for age, blood pressure variables, body mass index, ApoB/A1 ratio, smoking as well as cerebral pulsatility index, a previously suggested early marker of SVD. The gcPWV displayed satisfactory stability to field-of-view variations. Our results suggest that SVD is accompanied by changes in the cerebral arterial wall that can be captured by considering the velocity of the pulse wave transmission through the cerebral arterial network.
  •  
6.
  • Holmgren, Madelene, 1992- (författare)
  • 4D flow MRI and modelling to assess cerebral arterial hemodynamics : method development and evaluation, with implementation in patients with symptomatic carotid stenosis
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Blood flow measurements are important for understanding the development of cerebrovascular diseases. With 4D flow magnetic resonance imaging (4D flow MRI), simultaneous velocity measurements are obtained in all cerebral arteries in a scan of about ten minutes. However, 4D flow MRI is a relatively new technique. For usefulness in both clinics and research, detailed knowledge is needed about its accuracy and precision for flow quantification. In patients with stroke or transient ischemic attack (TIA) from a symptomatic carotid stenosis, the stenosis may generate a difference in blood pressure and flow between the left and right cerebral hemispheres. Such a hemispheric pressure difference could be an early marker of to what extent a stenosis is affecting cerebral hemodynamics, which could be useful in the planning of carotid surgery. The overall aim of the thesis was to determine the accuracy of 4D flow MRI to measure cerebral arterial blood flow, and to develop and evaluate an approach combining 4D flow MRI and computational fluid dynamics (CFD) to characterize the cerebral arterial hemodynamics, with implementation in patients with symptomatic carotid stenosis. The thesis is based on four papers, investigating two cohorts.The first cohort consisted of 35 elderly volunteers (mean age 79 years) and was studied in paper I-II. Blood flow rates were measured in nine cerebral arteries with 4D flow MRI and 2D phase-contrast MRI as reference. Three different flow quantification methods for 4D flow MRI were evaluated and optimized: one clustering approach and two threshold-based methods. The proposed new method, based on a locally adapted threshold, outperformed the previously suggested methods in flow rate quantification. For the clustering method, flow rates were systematically underestimated. 4D flow MRI was also evaluated to assess different arterial pulsatility measures, and a Windkessel model was used to estimate reference values for cerebrovascular resistance and cerebral arterial compliance in elderly.The second cohort consisted of 28 stroke and TIA patients (mean age 73 years) with symptomatic carotid stenosis and was studied in paper III-IV. With 4D flow MRI and CFD, the preoperative hemispheric pressure laterality was quantified in the patients. The pressure laterality was compared to hemispheric flow lateralities. Estimating the hemispheric pressure laterality was a promising physiological biomarker for grading the cerebral arterial hemodynamic disturbances in patients with symptomatic carotid stenosis. A CFD model was also developed to predict carotid stump pressure, i.e., the important pressure measured in the clamped carotid artery during surgical removal of the stenosis. The predicted stump pressures were correlated with the pressures measured during surgery. Stump pressure prediction was promising and could be a potential tool in the preoperative planning in order to avoid hypoperfusion during surgery. In summary, post-processing methods were successfully developed and evaluated for accurate assessment of mean and pulsatile cerebral blood flow rates with 4D flow MRI. Thereby, this thesis provided knowledge about possibilities and limitations of how 4D flow MRI can be used with respect to cerebral arterial blood flow rate assessment. By contributing with models combining 4D flow MRI and CFD, specifically developed for analysis of pressure distributions in cerebral arteries, novel methods were proposed for assessing patients with symptomatic carotid stenosis in the planning of carotid surgery.
  •  
7.
  • Jacobsson, Johan, et al. (författare)
  • Comparison of the CSF dynamics between patients with idiopathic normal pressure hydrocephalus and healthy volunteers
  • 2019
  • Ingår i: Journal of Neurosurgery. - : American Association of Neurological Surgeons. - 0022-3085 .- 1933-0693. ; 131:4, s. 1018-1023
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Intracranial pressure (ICP), outflow resistance (Rout), and amplitude of cardiac-related ICP pulsations (AMPs) are established parameters to describe the CSF hydrodynamic system and are assumed, but not confirmed, to be disturbed in idiopathic normal pressure hydrocephalus (INPH). The aim of this study was to compare the CSF hydrodynamic profile between patients with INPH and healthy volunteers.METHODS: Sixty-two consecutive INPH patients (mean age 74 years) and 40 healthy volunteers (mean age 70 years) were included. Diagnosis was made by two independent neurologists who assessed patients’ history, neurological status, and MRI studies. A CSF dynamic investigation through the lumbar route was performed: ICP and other CSF dynamic variables were blinded to the neurologists during the diagnostic process and were not used for establishing the diagnosis of INPH.RESULTS: Rout was significantly higher in INPH (Rout 17.1 vs 11.1; p < 0.001), though a substantial number of INPH subjects had normal Rout. There were no differences between INPH patients and controls regarding ICP (mean 11.5 mm Hg). At resting pressure, there was a trend that AMP in INPH was increased (2.4 vs 2.0 mm Hg; p = 0.109). The relationship between AMP and ICP was that they shared the same slope, but the curve was significantly shifted to the left for INPH (reduced P0 [p < 0.05]; i.e., higher AMP for the same ICP).CONCLUSIONS: This study established that the CSF dynamic profile of INPH deviates from that of healthy volunteers and that INPH should thus be regarded as a disease in which intracranial hydrodynamics are part of the pathophysiology.Clinical trial registration no.: NCT01188382 (clinicaltrials.gov)
  •  
8.
  • Jóhannesson, Gauti, 1979-, et al. (författare)
  • Intraocular Pressure Decrease Does Not Affect Blood Flow Rate of Ophthalmic Artery in Ocular Hypertension
  • 2020
  • Ingår i: Investigative Ophthalmology and Visual Science. - : Association for Research in Vision and Ophthalmology. - 0146-0404 .- 1552-5783. ; 61:12
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To investigate if decrease of IOP affects the volumetric blood flow rate in the ophthalmic artery (OA) in patients with previously untreated ocular hypertension.METHODS: Subjects with untreated ocular hypertension (n = 30; mean age 67 +/- 8 years; 14 females) underwent ophthalmologic examination and a 3-Tesla magnetic resonance imaging investigation. The magnetic resonance imaging included three-dimensional high-resolution phase-contrast magnetic resonance imaging to measure the OA blood flow rate. The subjects received latanoprost once daily in the eye with higher pressure, the untreated eye served as control. The same measurements were repeated approximately 1 week later.RESULTS: The mean OA blood flow rate before and after treatment was 12.4 +/- 4.4 and 12.4 +/- 4.6 mL/min in the treated eye (mean +/- SD; P = 0.92) and 13.5 +/- 5.2 and 13.4 +/- 4.1 mL/min in the control eye (P = 0.92). There was no significant difference between the treated and control eye regarding blood flow rate before (P = 0.13) or after treatment (P = 0.18), or change in blood flow rate after treatment (0.1 +/- 3.1 vs.-0.1 +/- 4.0 mL/min, P = 0.84). Latanoprost decreased the IOP by 7.2 +/- 3.1 mm Hg in the treated eye (P < 0.01).CONCLUSIONS: The results indicate that a significant lowering of IOP does not affect the blood flow rate of the OA in ocular hypertension subjects. The ability to maintain blood supply to the eye independent of the IOP could be a protective mechanism in preserving vision in subjects with ocular hypertension.
  •  
9.
  • Kaipainen, Aku L, et al. (författare)
  • Cerebrospinal fluid dynamics in idiopathic intracranial hypertension : a literature review and validation of contemporary findings
  • 2021
  • Ingår i: Acta Neurochirurgica. - : Springer. - 0001-6268 .- 0942-0940. ; 163:12, s. 3353-3368
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Idiopathic intracranial hypertension (IIH) is a rare disease of unknown aetiology related possibly to disturbed cerebrospinal fluid (CSF) dynamics and characterised by elevated intracranial pressure (ICP) causing optic nerve atrophy if not timely treated. We studied CSF dynamics of the IIH patients based on the available literature and our well-defined cohort.Method: A literature review was performed from PubMed between 1980 and 2020 in compliance with the PRISMA guideline. Our study includes 59 patients with clinical, demographical, neuro-ophthalmological, radiological, outcome data, and lumbar CSF pressure measurements for suspicion of IIH; 39 patients had verified IIH while 20 patients did not according to Friedman’s criteria, hence referred to as symptomatic controls.Results: The literature review yielded 19 suitable studies; 452 IIH patients and 264 controls had undergone intraventricular or lumbar CSF pressure measurements. In our study, the mean CSF pressure, pulse amplitudes, power of respiratory waves (RESP), and the pressure constant (P0) were higher in IIH than symptomatic controls (p < 0.01). The mean CSF pressure was higher in IIH patients with psychiatric comorbidity than without (p < 0.05). In IIH patients without acetazolamide treatment, the RAP index and power of slow waves were also higher (p < 0.05). IIH patients with excess CSF around the optic nerves had lower relative pulse pressure coefficient (RPPC) and RESP than those without (p < 0.05).Conclusions: Our literature review revealed increased CSF pressure, resistance to CSF outflow and sagittal sinus pressure (SSP) as key findings in IIH. Our study confirmed significantly higher lumbar CSF pressure and increased CSF pressure waves and RAP index in IIH when excluding patients with acetazolamide treatment. In overall, the findings reflect decreased craniospinal compliance and potentially depleted cerebral autoregulation resulting from the increased CSF pressure in IIH. The increased slow waves in patients without acetazolamide may indicate issues in autoregulation, while increased P0 could reflect the increased SSP.
  •  
10.
  • Kristiansen, Martin, et al. (författare)
  • Feasibility of MRI to assess differences in ophthalmic artery blood flow rate in normal tension glaucoma and healthy controls
  • 2021
  • Ingår i: Acta Ophthalmologica. - : John Wiley & Sons. - 1755-375X .- 1755-3768. ; 99:5, s. e679-e685
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To examine feasibility of phase-contrast magnetic resonance imaging (PCMRI) and to assess blood flow rate in the ophthalmic artery (OA) in patients with normal tension glaucoma (NTG) compared with healthy controls.Methods: Sixteen patients with treated NTG and 16 age- and sex-matched healthy controls underwent PCMRI using a 3-Tesla scanner and ophthalmological examinations. OA blood flow rate was measured using a 2D PCMRI sequence with a spatial resolution of 0.35 mm(2).Results: The blood flow rate in the NTG group was 9.6 +/- 3.9 ml/min [mean +/- SD] compared with 11.9 +/- 4.8 ml/min in the control group. Resistance Index (RI) and Pulsatility Index (PI) were 0.73 +/- 0.08 and 1.36 +/- 0.29, respectively, in the NTG group and 0.68 +/- 0.13 and 1.22 +/- 0.40, respectively, in the healthy group. The mean visual field index (VFI) was 46% +/- 25 for the worse NTG eyes. The measured differences observed between the NTG group and the control group in blood flow rate (p = 0.12), RI (p = 0.18) and PI (p = 0.27) were non-significant.Conclusions: This case-control study, using PCMRI, showed a slight, but non-significant, reduction in OA blood flow rate in the NTG patients compared with the healthy controls. These results indicate that blood flow may be of importance in the pathogenesis of NTG. Considering that only a limited portion of the total OA blood flow supplies the ocular system and the large inter-individual differences, a larger study or more advanced PCMRI technique might give the answer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (11)
annan publikation (2)
doktorsavhandling (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Qvarlander, Sara, Te ... (16)
Eklund, Anders, 1965 ... (11)
Malm, Jan, Professor ... (9)
Wåhlin, Anders (7)
Lindén, Christina (3)
Jóhannesson, Gauti, ... (3)
visa fler...
Birnefeld, Johan (3)
Hansson, William (3)
Björnfot, Cecilia (3)
Garpebring, Anders (2)
Koskinen, Lars-Owe D ... (2)
Ambarki, Khalid (2)
Hallberg, Per (2)
Yang, Jun (2)
Eklund, Anders, Prof ... (2)
Larsson, Jenny, 1990 ... (2)
Wåhlin, Anders, Doce ... (2)
Luciano, Mark G (2)
Dombrowski, Stephen ... (2)
Haney, Michael (1)
Leinonen, Ville (1)
Wahlin, Anders (1)
Larsson, Jenny (1)
Johansson, Elias (1)
Nedergaard, Maiken (1)
Petersson, Karl (1)
Birnefeld, Elin (1)
Zarrinkoob, Laleh, 1 ... (1)
Birnefeld, Johan, 19 ... (1)
Norrving, Bo, Profes ... (1)
Mori, Yuki (1)
Jacobsson, Johan (1)
Eide, Per Kristian (1)
Ringstad, Geir (1)
Kristiansen, Martin (1)
van Osch, Matthias J ... (1)
Wirestam, Ronnie, Pr ... (1)
Schmid Daners, Maria ... (1)
Radbruch, Alexander (1)
Holmgren, Madelene, ... (1)
Kaipainen, Aku L (1)
Martoma, Erik (1)
Puustinen, Tero (1)
Tervonen, Joona (1)
Jyrkkänen, Henna-Kai ... (1)
Paterno, Jussi J (1)
Kotkansalo, Anna (1)
Rantala, Susanna (1)
Vanhanen, Ulla (1)
Lehto, Soili M (1)
visa färre...
Lärosäte
Umeå universitet (16)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Teknik (2)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy