SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rüther Nils Associate Professor) "

Search: WFRF:(Rüther Nils Associate Professor)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Anders G. (author)
  • Modelling flow with free and rough surfaces in the vicinity of hydropower plants
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Flow with free and rough surfaces near hydropower stations is of interest for both engineering and environmental applications. Here, Computational Fluid Dynamics simulations of free surface flow and flow over rough surfaces in regulated rivers were performed in applications such fish migration, spillway design and flow over rough surfaces as in hydropower tunnels or natural channels. For all the investigated applications it is typical with very large geometrical scales, high flow rates and highly turbulent flow. Modelling boundaries such as free water surfaces and rough walls presents a challenge and was given special attention as well as the treatment of turbulence. Validation of the numerical simulations was performed in all cases with methods such as acoustic measurements with an Acoustic Doppler Current Profiler (ADCP), Acoustic Doppler Velocimeter (ADV) and optical measurements with Particle Image Velocimetry (PIV).Numerical simulations have been used to evaluate the flow downstream the Stornorrfors hydropower plant in Umeälven with regards to upstream migrating fish. Field measurements with an ADCP were performed and the measurements were used to validate the simulations. By adding a fish ladder in the simulations it was possible to investigate the attraction water created from the fishway at different positions and angles. An additional possibility to create better attraction water and improve the conditions for upstream migrating fish was simulated by guiding the spill water from the hydropower dam through a smaller passage from the old river bed.Fish population data from the same location was compared with flow fields from numerical simulations. The population data was compared with variables such as velocity, vorticity and turbulence intensity. A correlation between fish detections and turbulence intensity was shown.Simulations on the spilling from a dam were performed and compared to experimental results from a physical scale model. ADV was used to measure the velocity and validate the simulations. Two different spillway configurations were considered and simulations with both the Rigid Lid model and the Volume of Fluids method were carried out. Water levels, velocities and the shape of the water surface were compared between simulations and experiments. The simulations capture both qualitative features such as a vortex near the outlet and show good quantitative agreement with the experiments.A wall with large surface roughness was created by laser scanning a tunnel. One of the side walls was down-scaled and used to create a rough wall in a channel with rectangular cross-section for both a numerical model and an experimental model. Numerical simulations were performed and validated by PIV-measurements in the experimental model.The resolution of the geometry for the rough surface was lowered in two steps and numerical simulations were performed for flow over all three surfaces. The difference in flow fields in the bulk and near wall region was investigated as well as the difference in turbulent quantities which can provide good input for a new model for surface roughness in applications with very large surface roughness and high velocities such as flow in hydropower tunnels or natural channels and rivers.
  •  
2.
  • Xie, Qiancheng (author)
  • Field Measurements and Numerical Simulations of Sediment Transport in a Tidal River
  • 2019
  • Licentiate thesis (other academic/artistic)abstract
    • In a coastal area, an alluvial lowland river has a free connection with the open sea and its flow is bidirectional. The river basin is often highly urbanized since it hosts valuable ecosystems and natural resources. Along with the growing population, climate change and human activities (e.g., industrialization, agricultural expansion, and fishery industry) pose a significant threat to the health of the river, leading to an unbalance of the flow and the sedimentation and also a considerable degradation of water quality.With long-term alluvial processes, the river often displays patterns such as meandering, braided, straight, wandering and anastomosing. In addition to the irregular geometry and bathymetry, a tidal river is typically influenced by the freshwater-saltwater interplay, which makes the hydrodynamic processes and sediment transport patterns extremely complicated. For many tidal river systems, cohesive sediment transported with the tides plays an important role. This is not only because of its interaction with flow but also due to its link to bed deformation.In this thesis, field measurements and numerical simulations of flow and sedimentation in a system, including a confluence and a meandering reach are presented and discussed. The numerical simulations are performed with the Delft3D package, which allows a coupling between complex river geometry, the bathymetry, the flow and the sediment boundaries in one module. Two morpho-dynamic models, a 2D depth-averaged model for the confluence and a 3D model for the meandering reach, are set up to disclose the fluvial processes in respective area.The objective of this thesis is, by means of extensive field measurements and numerical simulations, investigate flow features and sediment movement patterns in a tidal river. A comparatively long-term river-bed change, including a scour-hole at the confluence and asymmetric cross-sections at the bends, are also examined. Based on the perturbation theory, an improved sediment carrying capacity formula is also derived being suitable for calculations in a tidal environment. This study explores the variability of sediment transport, and reveals the relationship between the flow velocity and suspended load influenced by both the run-off and the tides. Their interactions also generate a different morphological regime as compared to a non-tidal river reach.This research may support a decision‐making process when considering the integrated tidal river management and it also provides a reference for other similar situations. The calibrated and validated model may therefore be a powerful tool for managers or researchers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view