SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rabbel W ) "

Sökning: WFRF:(Rabbel W )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arevalo-Martinez, D. L., et al. (författare)
  • Ideas and perspectives: Land-ocean connectivity through groundwater
  • 2023
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 20:3, s. 647-662
  • Tidskriftsartikel (refereegranskat)abstract
    • For millennia, humans have gravitated towards coastlines for theirresource potential and as geopolitical centres for global trade. A basicrequirement ensuring water security for coastal communities relies on adelicate balance between the supply and demand of potable water. Theinteraction between freshwater and saltwater in coastal settings is,therefore, complicated by both natural and human-driven environmentalchanges at the land-sea interface. In particular, ongoing sea-level rise,warming and deoxygenation might exacerbate such perturbations. In thiscontext, an improved understanding of the nature and variability ofgroundwater fluxes across the land-sea continuum is timely yet remains outof reach. The flow of terrestrial groundwater across the coastal transitionzone and the extent of freshened groundwater below the present-dayseafloor are receiving increased attention in marine and coastal sciencesbecause they likely represent a significant yet highly uncertain componentof (bio)geochemical budgets and because of the emerging interest in thepotential use of offshore freshened groundwater as a resource. At the sametime, "reverse" groundwater flux from offshore to onshore is of prevalentsocio-economic interest, as terrestrial groundwater resources arecontinuously pressured by over-pumping and seawater intrusion in many coastalregions worldwide. An accurate assessment of the land-ocean connectivitythrough groundwater and its potential responses to future anthropogenicactivities and climate change will require a multidisciplinary approachcombining the expertise of geophysicists, hydrogeologists, (bio)geochemistsand modellers. Such joint activities will lay the scientific basis forbetter understanding the role of groundwater in societally relevant issuessuch as climate change, pollution and the environmental status of thecoastal oceans within the framework of the United Nations SustainableDevelopment Goals. Here, we present our perspectives on future researchdirections to better understand land-ocean connectivity through groundwater,including the spatial distributions of the essential hydrogeologicalparameters, highlighting technical and scientific developments and brieflydiscussing the societal relevance of that connectivity in rapidly changing coastal oceans.
  •  
2.
  •  
3.
  • Gregersen, S., et al. (författare)
  • Uniqueness of modeling results from teleseismic P-Wave tomography in Project Tor
  • 2010
  • Ingår i: Tectonophysics. - 0040-1951 .- 1879-3266. ; 481:1-4, s. 99-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Within Project Tor. which is about Teleseismic Tomography across the Tomquist Zone in Germany-Denmark-Sweden, we have confirmed very significant deep lithosphere differences And modeling is substantiated via completely independent methods. In 1996-1997 our 130 seismographs constituted the largest seismic antenna ever in Europe. The Tor area was chosen along a well studied crustal profile of an earlier project, and the modeling efforts were concentrated on the deep lithosphere and asthenosphere differences to depths around 300 km The Tor data have been subjected to P-wave travel time tomography. surface wave and receiver function analysis as well as anisotropy and scattering measurements An important goal of the project was to make several independent inversions of the tomography data. and compare the results in an attempt to evaluate uniqueness, resolution and accuracy of these inversions. The comparisons of this paper involve more diversity in methods than any previous comparison. The geological outcome is a substantiation of earlier statements that, "The transition is interpreted to be sharp and steep in two places It goes all through the lithosphere at the northern rim of the Tornquist Zone near the border between Sweden and Denmark, and here the lithosphere difference is large to depths more than 200 km. The other lithosphere difference. of smaller scale, is found near the southern edge of the Ringkobing-Fyn High near the border between Denmark and Germany Also this transition is sharp and steep. and goes all through the lithosphere to depths around 120 km. These two sharp transitions divide the Tor region into 3 different lithosphere structures distinguishable in P-wave travel time tomography. surface wave dispersion. P- and S-wave anisotropy and partly in P-wave scattering" The mentioned broad-scale features are judged to be unambiguously determined, with well-described resolution and accuracy Unfortunately a detail like the slope of the subcrustal lithosphere transition right under the Tronquist Zone cannot be constrained even if this is where the resolution is best. and the curiosity largest.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy