SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rabin Sam S.) "

Search: WFRF:(Rabin Sam S.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ma, Jianyong, et al. (author)
  • Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production - a modelling study in eastern Africa
  • 2022
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 19:8, s. 2145-2169
  • Journal article (peer-reviewed)abstract
    • Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. Changing practices such as reducing tillage, fertilizer use, or cover crops are expected to enhance soil organic carbon (SOC) storage, with climate change mitigation co-benefits, while increasing crop production. However, the quantification of cropland management effects on agricultural ecosystems remains inadequate in this region. Here, we explored seven management practices and their potential effects on soil carbon (C) pools, nitrogen (N) losses, and crop yields under different climate scenarios, using the dynamic vegetation model LPJ-GUESS. The model performance is evaluated against observations from two long-term maize field trials in western Kenya and reported estimates from published sources. LPJ-GUESS generally produces soil C stocks and maize productivity comparable with measurements and mostly captures the SOC decline under some management practices that is observed in the field experiments. We found that for large parts of Kenya and Ethiopia, an integrated conservation agriculture practice (no-tillage, residue and manure application, and cover crops) increases SOC levels in the long term (+11g% on average), accompanied by increased crop yields (+22g%) in comparison to the conventional management. Planting nitrogen-fixing cover crops in our simulations is also identified as a promising individual practice in eastern Africa to increase soil C storage (+4g%) and crop production (+18g%), with low environmental cost of N losses (+24g%). These management impacts are also sustained in simulations of three future climate pathways. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
  •  
2.
  • Ma, Jianyong, et al. (author)
  • Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285)
  • 2022
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:2, s. 815-839
  • Journal article (peer-reviewed)abstract
    • Biological nitrogen fixation (BNF) from grain legumes is of significant importance in global agricultural ecosystems. Crops with BNF capability are expected to support the need to increase food production while reducing nitrogen (N) fertilizer input for agricultural sustainability, but quantification of N fixing rates and BNF crop yields remains inadequate on a global scale. Here we incorporate two legume crops (soybean and faba bean) with BNF into a dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). The performance of this new implementation is evaluated against observations from a range of water and N management trials. LPJ-GUESS generally captures the observed response to these management practices for legume biomass production, soil N uptake, and N fixation, despite some deviations from observations in some cases. Globally, simulated BNF is dominated by soil moisture and temperature, as well as N fertilizer addition. Annual inputs through BNF are modeled to be 11.6±2.2ĝ€¯Tgĝ€¯N for soybean and 5.6±1.0ĝ€¯Tgĝ€¯N for all pulses, with a total fixation of 17.2±2.9ĝ€¯Tgĝ€¯Nĝ€¯yr-1 for all grain legumes during the period 1981-2016 on a global scale. Our estimates show good agreement with some previous statistical estimates but are relatively high compared to some estimates for pulses. This study highlights the importance of accounting for legume N fixation process when modeling C-N interactions in agricultural ecosystems, particularly when it comes to accounting for the combined effects of climate and land-use change on the global terrestrial N cycle.
  •  
3.
  • Rabin, Sam S., et al. (author)
  • The Fire Modeling Intercomparison Project (FireMIP), phase 1 : Experimental and analytical protocols with detailed model descriptions
  • 2017
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:3, s. 1175-1197
  • Journal article (peer-reviewed)abstract
    • The important role of fire in regulating vegetation community composition and contributions to emissions of greenhouse gases and aerosols make it a critical component of dynamic global vegetation models and Earth system models. Over 2 decades of development, a wide variety of model structures and mechanisms have been designed and incorporated into global fire models, which have been linked to different vegetation models. However, there has not yet been a systematic examination of how these different strategies contribute to model performance. Here we describe the structure of the first phase of the Fire Model Intercomparison Project (FireMIP), which for the first time seeks to systematically compare a number of models. By combining a standardized set of input data and model experiments with a rigorous comparison of model outputs to each other and to observations, we will improve the understanding of what drives vegetation fire, how it can best be simulated, and what new or improved observational data could allow better constraints on model behavior. In this paper, we introduce the fire models used in the first phase of FireMIP, the simulation protocols applied, and the benchmarking system used to evaluate the models. We have also created supplementary tables that describe, in thorough mathematical detail, the structure of each model.
  •  
4.
  • Hantson, Stijn, et al. (author)
  • Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project
  • 2020
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:7, s. 3299-3318
  • Journal article (peer-reviewed)abstract
    • Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle and to infer relationships between climate, land use and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performance, and to date there has been limited evaluation of how well different models represent various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation of state-of-the-art global fire models, in order to improve projections of fire characteristics and fire impacts on ecosystems and human societies in the context of global environmental change. Here we perform a systematic evaluation of historical simulations made by nine FireMIP models to quantify their ability to reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39-536 Mha) and global annual fire carbon emission (0.91-4.75 Pg C yr-1) for modern conditions (2002-2012), but most of the range in burnt area is within observational uncertainty (345-468 Mha). Benchmarking scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely unable to represent interannual variations in burnt area. However, models that represent cropland fires see improved simulation of fire seasonality in the Northern Hemisphere. The three FireMIP models which explicitly simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in key regions, and this results in an underestimation of burnt area. The correct representation of spatial and seasonal patterns in vegetation appears to correlate with a better representation of burnt area. The two older fire models included in the FireMIP ensemble (LPJ-GUESS-GlobFIRM, MC2) clearly perform less well globally than other models, but it is difficult to distinguish between the remaining ensemble members; some of these models are better at representing certain aspects of the fire regime; none clearly outperforms all other models across the full range of variables assessed.
  •  
5.
  • Hantson, Stijn, et al. (author)
  • The status and challenge of global fire modelling
  • 2016
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:11, s. 3359-3375
  • Journal article (peer-reviewed)abstract
    • Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.
  •  
6.
  • Ma, Jianyong, et al. (author)
  • Estimating the Global Influence of Cover Crops on Ecosystem Service Indicators in Croplands With the LPJ-GUESS Model
  • 2023
  • In: Earth's Future. - 2328-4277. ; 11:5
  • Journal article (peer-reviewed)abstract
    • Cover crops (CCs) can improve soil nutrient retention and crop production while providing climate change mitigation co-benefits. However, quantifying these ecosystem services across global agricultural lands remains inadequate. Here, we assess how the use of herbaceous CCs with and without biological nitrogen (N) fixation affects agricultural soil carbon stocks, N leaching, and crop yields, using the dynamic global vegetation model LPJ-GUESS. The model performance is evaluated with observations from worldwide field trials and modeled output further compared against previously published large-scale estimates. LPJ-GUESS broadly captures the enhanced soil carbon, reduced N leaching, and yield changes that are observed in the field. Globally, we found that combining N-fixing CCs with no-tillage technique could potentially increase soil carbon levels by 7% (+0.32 Pg C yr−1 in global croplands) while reducing N leaching loss by 41% (−7.3 Tg N yr−1) compared with fallow controls after 36 years of simulation since 2015. This integrated practice is accompanied by a 2% of increase in total crop production (+37 million tonnes yr−1 including wheat, maize, rice, and soybean) in the last decade of the simulation. The identified effects of CCs on crop productivity vary widely among main crop types and N fertilizer applications, with small yield changes found in soybean systems and highly fertilized agricultural soils. Our results demonstrate the possibility of conservation agriculture when targeting long-term environmental sustainability without compromising crop production in global croplands.
  •  
7.
  • Zabel, Florian, et al. (author)
  • Large potential for crop production adaptation depends on available future varieties
  • 2021
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:16, s. 3870-3882
  • Journal article (peer-reviewed)abstract
    • Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view