SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Radermacher Peter) "

Sökning: WFRF:(Radermacher Peter)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Denk, Stephanie, et al. (författare)
  • Complement C5a Functions as a Master Switch for the pH Balance in Neutrophils Exerting Fundamental Immunometabolic Effects
  • 2017
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 198:12, s. 4846-4854
  • Tidskriftsartikel (refereegranskat)abstract
    • During sepsis, excessive activation of the complement system with generation of the anaphylatoxin C5a results in profound disturbances in crucial neutrophil functions. Moreover, because neutrophil activity is highly dependent on intracellular pH (pH(i)), we propose a direct mechanistic link between complement activation and neutrophil pHi. In this article, we demonstrate that in vitro exposure of human neutrophils to C5a significantly increased pHi by selective activation of the sodium/hydrogen exchanger. Upstream signaling of C5a-mediated intracellular alkalinization was dependent on C5aR1, intracellular calcium, protein kinase C, and calmodulin, and downstream signaling regulated the release of antibacterial myeloperoxidase and lactoferrin. Notably, the pH shift caused by C5a increased the glucose uptake and activated glycolytic flux in neutrophils, resulting in a significant release of lactate. Furthermore, C5a induced acidification of the extracellular micromilieu. In experimental murine sepsis, pHi of blood neutrophils was analogously alkalinized, which could be normalized by C5aR1 inhibition. In the clinical setting of sepsis, neutrophils from patients with septic shock likewise exhibited a significantly increased pHi. These data suggest a novel role for the anaphylatoxin C5a as a master switch of the delicate pHi balance in neutrophils resulting in profound inflammatory and metabolic changes that contribute to hyperlactatemia during sepsis.
  •  
2.
  • Halbgebauer, Rebecca, et al. (författare)
  • Thirty-Eight-Negative Kinase 1 Is a Mediator of Acute Kidney Injury in Experimental and Clinical Traumatic Hemorrhagic Shock
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 11, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Trauma represents a major socioeconomic burden worldwide. After a severe injury, hemorrhagic shock (HS) as a frequent concomitant aspect is a central driver of systemic inflammation and organ damage. The kidney is often strongly affected by traumatic-HS, and acute kidney injury (AKI) poses the patient at great risk for adverse outcome. Recently, thirty-eight-negative kinase 1 (TNK1) was proposed to play a detrimental role in organ damage after trauma/HS. Therefore, we aimed to assess the role of TNK1 in HS-induced kidney injury in a murine and apost hocanalysis of a non-human primate model of HS comparable to the clinical situation. Mice and non-human primates underwent resuscitated HS at 30 mmHg for 60 min. 5 h after the induction of shock, animals were assessed for systemic inflammation and TNK1 expression in the kidney.In vitro, murine distal convoluted tubule cells were stimulated with inflammatory mediators to gain mechanistic insights into the role of TNK1 in kidney dysfunction. In a translational approach, we investigated blood drawn from either healthy volunteers or severely injured patients at different time points after trauma (from arrival at the emergency room and at fixed time intervals until 10 days post injury; identifier: NCT02682550,). A pronounced inflammatory response, as seen by increased IL-6 plasma levels as well as early signs of AKI, were observed in mice, non-human primates, and humans after trauma/HS. TNK1 was found in the plasma early after trauma-HS in trauma patients. Renal TNK1 expression was significantly increased in mice and non-human primates after HS, and these effects with concomitant induction of apoptosis were blocked by therapeutic inhibition of complement C3 activation in non-human primates. Mechanistically,in vitrodata suggested that IL-6 rather than C3 cleavage products induced upregulation of TNK1 and impaired barrier function in renal epithelial cells. In conclusion, these data indicate that C3 inhibitionin vivomay inhibit an excessive inflammatory response and mediator release, thereby indirectly neutralizing TNK1 as a potent driver of organ damage. In future studies, we will address the therapeutic potential of direct TNK1 inhibition in the context of severe tissue trauma with different degrees of additional HS.
  •  
3.
  • Knudson, Dean, et al. (författare)
  • Global software engineering experience through international capstone project exchanges
  • 2018
  • Ingår i: Proceedings - International Conference on Software Engineering. - New York : ACM Digital Library. - 9781450357173 ; , s. 54-58
  • Konferensbidrag (refereegranskat)abstract
    • Today it is very common for software systems to be built by teams located in more than one country. For example, a project team may be located in the US while the team lead resides in Sweden. How then should students be trained for this kind of work? Senior design or capstone projects offer students real-world hands-on experience but rarely while working internationally. One reason is that most instructors do not have international business contacts that allow them to find project sponsors in other countries. Another reason is the fear of having to invest a huge amount of time managing an international project. In this paper we present the general concepts related to "International Capstone Project Exchanges", the basic model behind the exchanges (student teams are led by an industry sponsor residing in a different country) and several alternate models that have been used in practice. We will give examples from projects in the US, Germany, Sweden, Australia, and Colombia. We have extended the model beyond software projects to include engineering projects as well as marketing, and journalism. We conclude with a description of an International Capstone Project Exchange website that we have developed to aid any university in establishing their own international project exchange.
  •  
4.
  • Mastellos, Dimitrios C., et al. (författare)
  • Complement C3 vs C5 inhibition in severe COVID-19 : Early clinical findings reveal differential biological efficacy
  • 2020
  • Ingår i: Clinical Immunology. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 1521-6616 .- 1521-7035. ; 220
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.
  •  
5.
  • Messerer, David Alexander Christian, et al. (författare)
  • Animal-Free Human Whole Blood Sepsis Model to Study Changes in Innate Immunity
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 11, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying innate immunity in humans is crucial for understanding its role in the pathophysiology of systemic inflammation, particularly in the complex setting of sepsis. Therefore, we standardized a step-by-step process from the venipuncture to the transfer in a human model system, while closely monitoring the inflammatory response for up to three hours. We designed an animal-free, human whole blood sepsis model using a commercially available, simple to use, tubing system. First, we analyzed routine clinical parameters, including cell count and blood gas analysis. Second, we demonstrated that extracellular activation markers (e.g., CD11b and CD62l) as well as intracellular metabolic (intracellular pH) and functional (generation of radical oxygen species) features remained stable after incubation in the whole blood model. Third, we mimicked systemic inflammation during early sepsis by exposure of whole blood to pathogen-associated molecular patterns. Stimulation with lipopolysaccharide revealed the capability of the model system to evoke a sepsis-like inflammatory phenotype of innate immunity. In summary, the presented model serves as a convenient, economic, and reliable platform to study innate immunity in human whole blood, which may yield clinically important insights.
  •  
6.
  • Messerer, David A. C., et al. (författare)
  • Immunopathophysiology of trauma-related acute kidney injury
  • 2021
  • Ingår i: Nature Reviews Nephrology. - : Springer Nature. - 1759-5061 .- 1759-507X. ; 17:2, s. 91-111
  • Forskningsöversikt (refereegranskat)abstract
    • Physical trauma can affect any individual and is globally accountable for more than one in every ten deaths. Although direct severe kidney trauma is relatively infrequent, extrarenal tissue trauma frequently results in the development of acute kidney injury (AKI). Various causes, including haemorrhagic shock, rhabdomyolysis, use of nephrotoxic drugs and infectious complications, can trigger and exacerbate trauma-related AKI (TRAKI), particularly in the presence of pre-existing or trauma-specific risk factors. Injured, hypoxic and ischaemic tissues expose the organism to damage-associated and pathogen-associated molecular patterns, and oxidative stress, all of which initiate a complex immunopathophysiological response that results in macrocirculatory and microcirculatory disturbances in the kidney, and functional impairment. The simultaneous activation of components of innate immunity, including leukocytes, coagulation factors and complement proteins, drives kidney inflammation, glomerular and tubular damage, and breakdown of the blood-urine barrier. This immune response is also an integral part of the intense post-trauma crosstalk between the kidneys, the nervous system and other organs, which aggravates multi-organ dysfunction. Necessary lifesaving procedures used in trauma management might have ambivalent effects as they stabilize injured tissue and organs while simultaneously exacerbating kidney injury. Consequently, only a small number of pathophysiological and immunomodulatory therapeutic targets for TRAKI prevention have been proposed and evaluated. Acute kidney injury is a common complication of trauma. Here, the authors examine how, in addition to direct trauma to the kidneys, the pathophysiological responses to traumatic injuries in distant organs, including immune responses, can result in kidney dysfunction.
  •  
7.
  • Scheeren, Thomas W. L., et al. (författare)
  • Current use of inotropes in circulatory shock
  • 2021
  • Ingår i: Annals of Intensive Care. - : Springer. - 2110-5820. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundTreatment decisions on critically ill patients with circulatory shock lack consensus. In an international survey, we aimed to evaluate the indications, current practice, and therapeutic goals of inotrope therapy in the treatment of patients with circulatory shock.MethodsFrom November 2016 to April 2017, an anonymous web-based survey on the use of cardiovascular drugs was accessible to members of the European Society of Intensive Care Medicine (ESICM). A total of 14 questions focused on the profile of respondents, the triggering factors, first-line choice, dosing, timing, targets, additional treatment strategy, and suggested effect of inotropes. In addition, a group of 42 international ESICM experts was asked to formulate recommendations for the use of inotropes based on 11 questions.ResultsA total of 839 physicians from 82 countries responded. Dobutamine was the first-line inotrope in critically ill patients with acute heart failure for 84% of respondents. Two-thirds of respondents (66%) stated to use inotropes when there were persistent clinical signs of hypoperfusion or persistent hyperlactatemia despite a supposed adequate use of fluids and vasopressors, with (44%) or without (22%) the context of low left ventricular ejection fraction. Nearly half (44%) of respondents stated an adequate cardiac output as target for inotropic treatment. The experts agreed on 11 strong recommendations, all of which were based on excellent (> 90%) or good (81–90%) agreement. Recommendations include the indications for inotropes (septic and cardiogenic shock), the choice of drugs (dobutamine, not dopamine), the triggers (low cardiac output and clinical signs of hypoperfusion) and targets (adequate cardiac output) and stopping criteria (adverse effects and clinical improvement).ConclusionInotrope use in critically ill patients is quite heterogeneous as self-reported by individual caregivers. Eleven strong recommendations on the indications, choice, triggers and targets for the use of inotropes are given by international experts. Future studies should focus on consistent indications for inotrope use and implementation into a guideline for circulatory shock that encompasses individualized targets and outcomes.
  •  
8.
  • van Griensven, Martijn, et al. (författare)
  • PROTECTIVE EFFECTS OF THE COMPLEMENT INHIBITOR COMPSTATIN CP40 IN HEMORRHAGIC SHOCK
  • 2019
  • Ingår i: Shock. - Alphen aan den Rijn : LIPPINCOTT WILLIAMS & WILKINS. - 1073-2322 .- 1540-0514. ; 51:1, s. 78-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Trauma-induced hemorrhagic shock (HS) plays a decisive role in the development of immune, coagulation, and organ dysfunction often resulting in a poor clinical outcome. Imbalanced complement activation is intricately associated with the molecular danger response and organ damage after HS. Thus, inhibition of the central complement component C3 as turnstile of both inflammation and coagulation is hypothesized as a rational strategy to improve the clinical course afterHS. Applying intensive care conditions, anaesthetized, monitored, and protectively ventilated nonhuman primates (NHP; cynomolgusmonkeys) received a pressure-controlled severe HS (60min at mean arterial pressure 30 mmHg) with subsequent volume resuscitation. Thirty minutes after HS, animals were randomly treated with either an analog of the C3 inhibitor compstatin (i.e., Cp40) in saline (n =4) or with saline alone (n =4). The observation period lasted 300 min after induction of HS. We observed improved kidney function in compstatin Cp40-treated animals after HS as determined by improved urine output, reduced damage markers and a tendency of less histopathological signs of acute kidney injury. Sham-treated animals revealed classical signs ofmucosal edema, especially in the ileum and colon reflected by worsened microscopic intestinal injury scores. In contrast, Cp40-treated HS animals exhibited only minor signs of organ edema and significantly less intestinal damage. Furthermore, early systemic inflammation and coagulation dysfunction were both ameliorated by Cp40. The data suggest that therapeutic inhibition of C3 is capable to significantly improve immune, coagulation, and organ function and to preserve organ-barrier integrity early after traumatic HS. C3-targeted complement inhibition may therefore reflect a promising therapeutic strategy in fighting fatal consequences of HS.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (7)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nilsson, Bo (7)
Lambris, John D. (5)
Huber-Lang, Markus (5)
Nilsson Ekdahl, Kris ... (4)
Denk, Stephanie (3)
Gebhard, Florian (2)
visa fler...
Kalbitz, Miriam (2)
Messerer, David A. C ... (2)
Connolly, E. Sander (1)
Pearse, Rupert M. (1)
Chew, Michelle (1)
Adler, Anna (1)
Nilsson, Kristina, 1 ... (1)
Biglarnia, Ali-Reza (1)
Vogt, Josef (1)
Rittirsch, Daniel (1)
De Backer, Daniel (1)
Mebazaa, Alexandre (1)
Cecconi, Maurizio (1)
Leone, Marc (1)
Cronhjort, Maria (1)
Gordon, Anthony C. (1)
Koster, Geert (1)
van der Horst, Iwan ... (1)
Hug, Stefan (1)
Stratmann, Alexander ... (1)
Erber, Maike (1)
Vidoni, Laura (1)
Braun, Christian Kar ... (1)
Messerer, David Alex ... (1)
Sander, Michael (1)
Sandahl, Kristian, 1 ... (1)
Roos, Mikael (1)
Vieillard-Baron, Ant ... (1)
Vincent, Jean-Louis (1)
Kleiner, Carsten (1)
Ruggeri, Annalisa (1)
Saugel, Bernd (1)
Iacobelli, Simona (1)
Vistisen, Simon T. (1)
Monnet, Xavier (1)
Pinsky, Michael R. (1)
Hernandez, Glenn (1)
Teboul, Jean-Louis (1)
Vignon, Philippe (1)
Neher, Miriam D. (1)
Wiegner, Rebecca (1)
Weckbach, Sebastian (1)
Ignatius, Anita (1)
Weiss, Manfred E. (1)
visa färre...
Lärosäte
Uppsala universitet (7)
Linnéuniversitetet (4)
Linköpings universitet (2)
Karolinska Institutet (1)
Blekinge Tekniska Högskola (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy