SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Radic Valentina) "

Sökning: WFRF:(Radic Valentina)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bliss, Andrew, et al. (författare)
  • Global response of glacier runoff to twenty-first century climate change
  • 2014
  • Ingår i: J GEOPHYS RES-EARTH. - 2169-9003. ; 119:4, s. 717-730
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrology of many important river systems in the world is influenced by the presence of glaciers in their upper reaches. We assess the global-scale response of glacier runoff to climate change, where glacier runoff is defined as all melt and rain water that runs off the glacierized area without refreezing. With an elevation-dependent glacier mass balance model, we project monthly glacier runoff for all mountain glaciers and ice caps outside Antarctica until 2100 using temperature and precipitation scenarios from 14 global climate models. We aggregate results for 18 glacierized regions. Despite continuous glacier net mass loss in all regions, trends in annual glacier runoff differ significantly among regions depending on the balance between increased glacier melt and reduction in glacier storage as glaciers shrink. While most regions show significant negative runoff trends, some regions exhibit steady increases in runoff (Canadian and Russian Arctic), or increases followed by decreases (Svalbard and Iceland). Annual glacier runoff is dominated by melt in most regions, but rain is a major contributor in the monsoon-affected regions of Asia and maritime regions such as New Zealand and Iceland. Annual net glacier mass loss dominates total glacier melt especially in some high-latitude regions, while seasonal melt is dominant in wetter climate regimes. Our results highlight the variety of glacier runoff responses to climate change and the need to include glacier net mass loss in assessments of future hydrological change.
  •  
2.
  •  
3.
  •  
4.
  • Hock, Regine, et al. (författare)
  • Climate sensitivity of Storglaciären, Sweden : an intercomparison of mass-balance models using ERA-40 re-analysis and regional climate model data
  • 2007
  • Ingår i: Annals of glaciology, Vol 46, 2007. - : International Glaciological Society. - 9780946417414 ; 46:1, s. 342-348
  • Konferensbidrag (refereegranskat)abstract
    • Estimates of glacier contributions to future sea-level rise are often computed from mass-balance sensitivities derived for a set of representative glaciers. Our purpose is to investigate how mass-balance projections and sensitivities vary when using different approaches to compute the glacier mass balance. We choose Storglaciären, Sweden, as a test site and apply five different models including temperature-index and energy-balance approaches further varying in spatial discretization. The models are calibrated using daily European Centre for Medium-Range Weather Forecasts re-analysis (ERA-40) data. We compute static mass-balance sensitivities and cumulative mass balances until 2100 based on daily temperatures predicted by a regional climate model. Net mass-balance sensitivities to a +1 K perturbation and a 10% increase in precipitation spanned from −0.41 to −0.61 and from 0.19 to 0.22 m a−1, respectively. The cumulative mass balance for the period 2002-2100 in response to the climate-model predicted temperature changes varied between −81 and −92 m for four models, but was −121 m for the fully distributed detailed energy-balance model. This indicates that mass losses may be underestimated if temperature-index methods are used instead of detailed energy-balance approaches that account for the effects of temperature changes on all energy-balance components individually. Our results suggest that future glacier predictions are sensitive to the choice of the mass-balance model broadening the spectrum in uncertainties.
  •  
5.
  • Hock, Regine, 1960-, et al. (författare)
  • GlacierMIP - A model intercomparison of global-scale glacier mass-balance models and projections
  • 2019
  • Ingår i: Journal of Glaciology. - : Cambridge University Press. - 0022-1430 .- 1727-5652. ; 65:251, s. 453-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Global-scale 21st-century glacier mass change projections from six published global glacier models are systematically compared as part of the Glacier Model Intercomparison Project. In total 214 projections of annual glacier mass and area forced by 25 General Circulation Models (GCMs) and four Representative Concentration Pathways (RCP) emission scenarios and aggregated into 19 glacier regions are considered. Global mass loss of all glaciers (outside the Antarctic and Greenland ice sheets) by 2100 relative to 2015 averaged over all model runs varies from 18 +/- 7% (RCP2.6) to 36 +/- 11% (RCP8.5) corresponding to 94 +/- 25 and 200 +/- 44 mm sea-level equivalent (SLE), respectively. Regional relative mass changes by 2100 correlate linearly with relative area changes. For RCP8.5 three models project global rates of mass loss (multi-GCM means) of >3 mm SLE per year towards the end of the century. Projections vary considerably between regions, and also among the glacier models. Global glacier mass changes per degree global air temperature rise tend to increase with more pronounced warming indicating that mass-balance sensitivities to temperature change are not constant. Differences in glacier mass projections among the models are attributed to differences in model physics, calibration and downscaling procedures, initial ice volumes and varying ensembles of forcing GCMs.
  •  
6.
  • Hock, Regine, et al. (författare)
  • Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36:L07501
  • Tidskriftsartikel (refereegranskat)abstract
    • The Intergovernmental Panel on Climate Change (IPCC) estimates that the sum of all contributions to sea‐level rise for the period 1961–2004 was 1.1 ± 0.5 mm a−1, leaving 0.7 ± 0.7 of the 1.8 ± 0.5 mm a−1 observed sea‐level rise unexplained. Here, we compute the global surface mass balance of all mountain glaciers and ice caps (MG&IC), and find that part of this much‐discussed gap can be attributed to a larger contribution than previously assumed from mass loss of MG&IC, especially those around the Antarctic Peninsula. We estimate global surface mass loss of all MG&IC as 0.79 ± 0.34 mm a−1 sea‐level equivalent (SLE) compared to IPCC's 0.50 ± 0.18 mm a−1. The Antarctic MG&IC contributed 28% of the global estimate due to exceptional warming around the Antarctic Peninsula and high sensitivities to temperature similar to those we find in Iceland, Patagonia and Alaska.
  •  
7.
  • Pfeffer, W. Tad, et al. (författare)
  • The Randolph Glacier Inventory : a globally complete inventory of glaciers
  • 2014
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 60:221, s. 537-552
  • Tidskriftsartikel (refereegranskat)abstract
    • The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given to completeness of coverage, but a limited, uniform set of attributes is attached to each of the similar to 198 000 glaciers in its latest version, 3.2. Satellite imagery from 1999-2010 provided most of the outlines. Their total extent is estimated as 726 800 +/- 34 000 km(2). The uncertainty, about +/- 5%, is derived from careful single-glacier and basin-scale uncertainty estimates and comparisons with inventories that were not sources for the RGI. The main contributors to uncertainty are probably misinterpretation of seasonal snow cover and debris cover. These errors appear not to be normally distributed, and quantifying them reliably is an unsolved problem. Combined with digital elevation models, the RGI glacier outlines yield hypsometries that can be combined with atmospheric data or model outputs for analysis of the impacts of climatic change on glaciers. The RGI has already proved its value in the generation of significantly improved aggregate estimates of glacier mass changes and total volume, and thus actual and potential contributions to sea-level rise.
  •  
8.
  • Radic, Valentina, et al. (författare)
  • Analysis of scaling methods in deriving future volume evolutions of valley glaciers
  • 2008
  • Ingår i: Journal of Glaciology. - : International Glaciological Society. - 0022-1430 .- 1727-5652. ; 54:187, s. 601-612
  • Tidskriftsartikel (refereegranskat)abstract
    • Volume-area scaling is a common tool for deriving future volume evolutions of valley glaciers and their contribution to sea-level rise. We analyze the performance of scaling relationships for deriving volume projections in comparison to projections from a one-dimensional ice-flow model. The model is calibrated for six glaciers (Nigardsbreen, Rhonegletscher, South Cascade Glacier, Sofiyskiy glacier, midre Lovenbreen and Abramov glacier). Volume evolutions forced by different hypothetical mass-balance perturbations are compared with those obtained from volume-area (V-A), volume-length (V-L) and volume-area-length (V-A-L) scaling. Results show that the scaling methods mostly underestimate the volume losses predicted by the ice-flow model, up to 47% for V-A scaling and up to 18% for V-L scaling by the end of the 100 year simulation period. In general, V-L scaling produces closer simulations of volume evolutions derived from the ice-flow model, suggesting that V-L scaling may be a better approach for deriving volume projections than V-A scaling. Sensitivity experiments show that the initial volumes and volume evolutions are highly sensitive to the choice of the scaling constants, yielding both over- and underestimates. However, when normalized by initial volume, volume evolutions are relatively insensitive to the choice of scaling constants, especially in the V-L scaling. The 100 year volume projections differ within 10% of initial volume when the V-A scaling exponent commonly assumed, gamma = 1.375, is varied by -30% to +45% (gamma = [0.95, 2.00]) and the V-L scaling exponent, q = 2.2, is varied by -30% to +45% (q = [1.52, 3.20]). This is encouraging for the use of scaling methods in glacier volume projections, particularly since scaling exponents may vary between glaciers and the scaling constants are generally unknown.
  •  
9.
  • Radic, Valentina, et al. (författare)
  • Glaciers in The Earth’s Hydrological Cycle : Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales
  • 2014
  • Ingår i: Surveys in geophysics. - 0169-3298 .- 1573-0956. ; 35:3, s. 813-837
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in mass contained by mountain glaciers and ice caps can modify theEarth’s hydrological cycle on multiple scales. On a global scale, the mass loss fromglaciers contributes to sea-level rise. On regional and local scales, glacier meltwater is animportant contributor to and modulator of river flow. In light of strongly acceleratedworldwide glacier retreat, the associated glacier mass losses raise concerns over the sus-tainability of water supplies in many parts of the world. Here, we review recent attempts toquantify glacier mass changes and their effect on river runoff on regional and global scales.We find that glacier runoff is defined ambiguously in the literature, hampering directcomparison of findings on the importance of glacier contribution to runoff. Despite con-sensus on the hydrological implications to be expected from projected future warming,there is a pressing need for quantifying the associated regional-scale changes in glacierrunoff and responses in different climate regimes.
  •  
10.
  • Radic, Valentina, et al. (författare)
  • Modeling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: A sensitivity study at Storglaciären, Sweden
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:F03003
  • Tidskriftsartikel (refereegranskat)abstract
    • Modeling the response of glaciers to future climate change is important for predicting changes in global sea level rise and local water resources. We compute until the year 2100 the mass balance and volume evolution of Storglacia¨ren, a small valley glacier in Sweden, using a temperature index mass balance model. We focus on the sensitivity of results to the choice of climate model and variants of adjusting ERA-40 temperatures to local conditions. ERA-40 temperature and precipitation series from 1961 to 2001 are validated and used both as input to the mass balance model and for statistical downscaling of one regional and six global climate models (GCMs). Future volume projections are computed using area-volume scaling and constant glacier area. ERA-40 data correlate well with observations and capture observed interannual variability of temperature and precipitation. The mass balance model driven by several variants of ERA-40 input performs similarly well regardless of temporal resolution of the input series (daily or monthly). The model explains _70% of variance of measured mass balance when the input temperatures are reduced by the lapse rate that maximizes model performance. Fitting ERA-40 temperatures to observations close to the glacier does not improve the performance of the model, leading us to conclude that ERA-40 can be used for mass balance modeling independent of meteorological observations. Projected future volume series show a loss of 50–90% of the initial volume by 2100. The differences in volume projections vary by 40% of the initial volume for six different GCMs input to mass balance model, while each volume projection varies by 20% depending on whether volume-area scaling or constant area is used and by 10% depending on details in the mass balance model used. The correction of biases in the seasonal temperature cycle of the GCMs with respect to the ERA-40 data is crucial for deriving realistic volume evolution. Static mass balance sensitivities to temperature and precipitation change in the 21st century are -0.48 m yr_1 K_1 and 0.025 m yr_1 per % increase, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy