SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rahman Habibur Seikh Mohammad 1976) "

Sökning: WFRF:(Rahman Habibur Seikh Mohammad 1976)

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, Abdalla M., et al. (författare)
  • Synthesis and characterization of Sm1-xZrxFe1-yMgyO3 (x, y = 0.5, 0.7, 0.9) as possible electrolytes for SOFCs
  • 2018
  • Ingår i: Key Engineering Materials. - 1013-9826 .- 1662-9795. ; 765 KEM, s. 49-53
  • Konferensbidrag (refereegranskat)abstract
    • The novel perovskite oxide series of Sm 1-x Zr x Fe 1-y Mg y O 3 (x,y = 0.5, 0.7, 0.9) were synthesized by solid state reaction method. X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and conductivity analysis were carried out. XRD patterns of sintered materials revealed the shifted Bragg reflection to higher angle for the higher content of Zr and Mg. This is related to the ionic size of the dopant elements. Rietveld refinement showed that all compounds crystallized in cubic space group of Fm-3m. SEM images showed that the grains were well defined with highly dense surfaces makes it potential as an electrolyte material in solid oxide fuel cells (SOFCs) or gases sensors. Impedance spectroscopy at 550-800 °C shows that conductivity is higher at higher temperature. Sm 0.5 Zr 0.5 Fe 0.5 Mg 0.5 O 3 shows the highest conductivity of 5.451 × 10 -3 S cm -1 at 800 °C. It was observed that 50% molar ratio of Mg and Zr doping performed highest conductivity.
  •  
2.
  • Afif, A., et al. (författare)
  • Advanced materials and technologies for hybrid supercapacitors for energy storage – A review
  • 2019
  • Ingår i: Journal of Energy Storage. - : Elsevier BV. - 2352-152X. ; 25:October 2019
  • Forskningsöversikt (refereegranskat)abstract
    • Supercapacitors have become the most significant energy conversion and storage system in recent renewable and sustainable nanotechnology. Due to its large energy capacity and supply with relatively short time and longer lifetime, supercapacitors breakthrough in advance energy applications. This review presents a comparative study of different materials, working principles, analysis, applications, advantages and disadvantages of various technologies available for supercapacitors. The aim of this article is to discuss the possibility of hybrid supercapacitor for the next generation of energy technology. The development of composite materials containing a wide range of active constituents (e.g., graphene, activated carbon, transition metals, metal oxides, perovskites and conducting polymers) by in-situ hybridization and ex-situ recombination is also discussed. This review consecrated largely the contribution of combining all materials (electrode and electrolyte) and their synthesis process and electrochemical performance. Enduringly, the potential issues and the perspectives for future research based on hybrid supercapacitors in energy applications are also presented.
  •  
3.
  • Afif, A., et al. (författare)
  • Ceramic fuel cells using novel proton-conducting BaCe 0.5 Zr 0.3 Y 0.1 Yb 0.05 Zn 0.05 O 3-δ electrolyte
  • 2022
  • Ingår i: Journal of Solid State Electrochemistry. - : Springer Science and Business Media LLC. - 1433-0768 .- 1432-8488. ; 1:26, s. 111-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Protonic ceramic fuel cells have become extremely interesting due to their high power output at the intermediate temperature range (400–700 °C). Significant progress has been made to develop electrolyte materials, doped barium cerates-zirconate, which gets the leading role due to its high chemical stability and high ionic conductivity. Here, we present a new composition BaCe0.5Zr0.3Y0.1Yb0.05Zn0.05O3-δ (BCZYYbZn05), where addition of 5 mol% Zn with Ce, Zr, Y, and Yb at the B-site of the perovskite material shows high stability with high conductivity. The material was synthesized by solid-state reaction route at 1400 °C which showed 98% relative density. Rietveld analysis of neutron powder diffraction data reveal an orthorhombic structure with Pbnm space group. Thermogravimetric analysis shows about 1.06% weight loss from 200 to 1000 °C which is mainly related to the formation of the oxygen vacancies. In wet hydrogen atmosphere, this material shows higher conductivity and lower activation energy than dry hydrogen atmosphere indicates the conduction type as protonic conduction. The anode-supported single test cell based on this electrolyte material demonstrates peak power densities 649 mW cm−2 at 700 °C using conventional BSCF cathode, representing an important step toward commercially viable SOFC technology.
  •  
4.
  • Afif, A., et al. (författare)
  • Electrochemical and structural characterization of BaCe 0.7 Zr 0.15 Y 0.1 Zn 0.05 O 3-δ as an electrolyte for SOFC-H
  • 2018
  • Ingår i: IET Conference Publications. ; 2018:CP750
  • Konferensbidrag (refereegranskat)abstract
    • As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.15Y01Zn0.05O3-s (BCZYZn10) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. Rietveld analysis of BaCe07Zr0.15Y01Zn0.05O3-5 shows the unit cell parameter is a = 4.3582(7) A. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.004032 Scm-1 and 0.00164 Scm-1 at 600 °C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn10 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
5.
  • Afif, Ahmed, et al. (författare)
  • Enhancement of proton conductivity through Yb and Zn doping in BaCe0.5Zr0.35Y0.15O3-delta electrolyte for IT-SOFCs
  • 2018
  • Ingår i: Processing and Application of Ceramics. - : National Library of Serbia. - 2406-1034 .- 1820-6131. ; 12:2, s. 181-189
  • Tidskriftsartikel (refereegranskat)abstract
    • The new compositions of BaCe0.5Zr0.3Y0.15-xYbxZn0.05O3-delta perovskite electrolytes (x = 0.1 and 0.15) were prepared by solid state synthesis and final sintering at 1500 degrees C. The obtained ceramics were investigated using X-ray diffraction, scanning electron microscopy, thermo-gravimetric analysis and impedance spectroscopy. The refinement of XRD data confirmed cubic crystal structure with Pm-3m space group for both samples. SEM morphology showed larger and compacted grains which enables obtaining of high density and high protonic conductivity. The relative densities of the samples were about 99% of the theoretical density after sintering at 1500 degrees C. The protonic conductivities at 650 degrees C were 2.8x10(-4) S/cm and 4.2x10(-3) S/cm for x = 0.1 and 0.15, respectively. The obtained results showed that higher Yb-content increases the ionic conductivity and both of these perovskites are promising electrolyte for intermediate temperature solid oxide fuel cells to get high efficiency, long-term stability and relatively low cost energy system.
  •  
6.
  • Afif, A., et al. (författare)
  • Scheelite type Sr1−xBaxWO4 (x = 0.1, 0.2, 0.3) for possible application in Solid Oxide Fuel Cell electrolytes
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019, The Author(s). Polycrystalline scheelite type Sr1−xBaxWO4 (x = 0.1, 0.2 & 0.3) materials were synthesized by the solid state sintering method and studied with respect to phase stability and ionic conductivity under condition of technological relevance for SOFC applications. All compounds crystallized in the single phase of tetragonal scheelite structure with the space group of I41/a. Room temperature X-ray diffraction and subsequent Rietveld analysis confirms its symmetry, space group and structural parameters. SEM illustrates the highly dense compounds. Significant mass change was observed to prove the proton uptake at higher temperature by TG-DSC. All compound shows lower conductivity compared to the traditional BCZY perovskite structured materials. SBW with x = 0.3 exhibit the highest ionic conductivity among all compounds under wet argon condition which is 1.9 × 10−6 S cm−1 at 1000 °C. Since this scheelite type compounds show significant conductivity, the new series of SBW could serve in IT-SOFC as proton conducting electrolyte.
  •  
7.
  • Afif, A., et al. (författare)
  • Structural and electrochemical characterization of BaCe0.7Zr0.2Y0.05Zn0.05O3 as an electrolyte for SOFC-H
  • 2016
  • Ingår i: IOP Conference Series: Materials Science and Engineering. - 1757-8981 .- 1757-899X. ; 121:1
  • Konferensbidrag (refereegranskat)abstract
    • As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.2Y0.05Zn0.05O3 (BCZYZn5) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. BaCe0.7Zr0.2Y0.05Zn0.05O3 shows cell parameter a = 4.3452(9) Å. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.276 × 10-3 Scm-1 and 0.204 × 10-3 Scm-1 at 600°C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn5 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
8.
  • Afif, A., et al. (författare)
  • Structural study and proton conductivity in BaCe0.7Zr0.25-xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)
  • 2016
  • Ingår i: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 41:27, s. 11823-11831
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid oxide fuel cell (SOPC) has been considered to generate power represented by conductivity. Zinc doped Barium Cerium Zirconium Yttrium oxide (BCZYZn) has been found to offer high protonic conductivity and high stability as being electrolyte for proton conducting SOFCs. In this study, we report a new series of proton conducting materials, BaCe0.7Zr0.25-xYxZn0.05O3 (x = 0.05, 0.1, 0.15, 0.2 and 0.25). The materials were synthesized by solid state reaction route and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal expansion, particle size and impedance spectroscopy (IS). Rietveld analysis of the XRD data reveal a cubic perovskite structure with Pm-3m space group up to composition x = 0.15. For x = 0.15 and 0.20, the materials have structural phase change to orthorhombic in the Pbnm space group. Scanning electron microscopy images show high density materials. Thermal expansion measurements show that the thermal expansion coefficient is in the range 10.0-11.0 x 10(-6)/degrees C. Impedance spectroscopy shows higher ionic conduction under wet condition compared to dry condition. Y content of 25% (BCZYZn25) exhibits highest conductivity of 1.84 x 10(-2) S/cm in wet Argon. This study indicated that perovskite electrolyte BCZYZn is promising material for the next generation of intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
9.
  • Ahmed, Istaq, 1972, et al. (författare)
  • Effect of co-doping on proton conductivity in perovskite oxides BaZr0.9In0.05M0.05O3−δ (M = Yb3+ or Ga3+)
  • 2010
  • Ingår i: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 35:12, s. 6381-6391
  • Tidskriftsartikel (refereegranskat)abstract
    • BaZr0.9In0.05M0.05O3-d (M ¼ Ga3+ or Yb3+) has been prepared by solid-statesynthesis route.Rietveld analysis of neutron powder diffraction data on as-prepared samples showed thatboth samples crystallise in the cubic space group Pm-3m. Scanning electron microscopyanalysis showed that the grains intheBaZr0.9In0.05Ga0.05O3-d sample were larger than the BaZr0.9In0.05Yb0.05O3-d sample. Dynamic thermogravimetric analysis indicates that the proton concentration was higher inpre-hydrated BaZr0.9In0.05Ga0.05O3-d sample (40%oftheoretical)than that of BaZr0.9In0.05Yb0.05O3-d sample (28%oftheoretical).Proton conductivity was studied on pre-hydrated samples(under both dry and wetAr atmospheres).Thebulk proton conductivities of the heating cycle of pre-hydrated BaZr0.9In0.05M0.05O3-d (M ¼ Ga3+ or Yb3+) samples were 2.1 * 10-5 S cm-1 and 1.9 * 10-4 Scm-1 at 350C, respectively.The effect of co-doping onproton conductivity was investigatedand the results are compared with single doped systems e.g. BaZr0.9M0.1O3-d (M=Ga3+, In3+ orYb3+) samples.
  •  
10.
  • Ahmed, Istaq, 1972, et al. (författare)
  • Proton Conductivity in Mixed B-Site Doped Perovskite Oxide BaZr[sub 0.5]In[sub 0.25]Yb[sub 0.25]O[sub 3 - delta]
  • 2010
  • Ingår i: Journal of The Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 157:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A wet chemical route was used to prepare the oxygen deficient codoped perovskite oxide BaZr0.5In0.25Yb0.25O3−. Analysis of X-ray powder diffraction data showed that the sample belongs to the cubic crystal system with space group Pmm. Dynamic thermogravimetric (TG) analysis confirmed complete filling of oxygen vacancies (V) by protonic defects (OH) during the hydration process. The proton conductivity was investigated by impedance spectroscopy. The bulk and total conductivities of prehydrated BaZr0.5In0.25Yb0.25O3− were found to be 8.5×10−4 and 2.2×10−5 S cm−1, respectively, at 300°C. The total conductivity in the codoped perovskite oxide was higher compared to that of the respective single doped perovskite oxides with the same doping level. The bulk and grain-boundary mobility and diffusion coefficients of protons were calculated at 200°C using impedance and TG data to obtain the conductivity and proton concentration, respectively. The high bulk diffusivity (2.3×10−7 cm2 s−1) was obtained which indicates that the protons are more free to move in the heavily doped matrix compared to the lightly doped systems where trapping of protons occurs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32
Typ av publikation
tidskriftsartikel (24)
konferensbidrag (5)
forskningsöversikt (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Eriksson, Sten, 1958 (24)
Rahman, Habibur Seik ... (19)
Rahman, Seikh Mohamm ... (13)
Azad, A. K. (10)
Radenahmad, N. (8)
Afif, A. (8)
visa fler...
Knee, Christopher, 1 ... (8)
Ahmed, Istaq, 1972 (5)
Norberg, Stefan, 197 ... (4)
Hossain, S. (3)
Zaini, Juliana H. (3)
Torino, Nico, 1982 (3)
Petra, P. I. (3)
Karlsson, Maths, 197 ... (3)
Ahlberg, Elisabet, 1 ... (2)
Bäckström, Joakim (2)
Abdalla, Abdalla M. (2)
Hull, S. (2)
Lim, C.M. (2)
Henry, Paul, 1972 (2)
Steegstra, Patrick, ... (2)
Hull, Stephen (2)
Petra, P. M. I. (1)
Irvine, J. T. S. (1)
Somalu, Mahendra R. (1)
Martinelli, Anna, 19 ... (1)
Elamin, Khalid, 1977 (1)
Thuvander, Mattias, ... (1)
Lindbergh, Göran (1)
ISLAM, A (1)
Smith, R. I. (1)
Tasfiah Azad, Atia (1)
Islan, Md Aminul (1)
Saqib, Muhammad (1)
Park, Jun Young (1)
bin Karim, Afizul Ha ... (1)
Hj Hairul Absah, Hid ... (1)
Afif, Ahmed (1)
Radenahmad, Nikdalil ... (1)
Zaini, Juliana (1)
Abdalla, Abdalla Moh ... (1)
Azad, Abul Kalam (1)
Islam, Md Aminul (1)
Cheok, Q. (1)
Islam, M. A. (1)
Biendicho, Jordi Jac ... (1)
Börjesson, Lars, 195 ... (1)
Hull, Steve (1)
Kinyanjui, Francis G ... (1)
Cornell, Ann (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (32)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (2)
Mittuniversitetet (2)
Uppsala universitet (1)
Stockholms universitet (1)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)
Teknik (15)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy