SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rahman Moksadur) "

Sökning: WFRF:(Rahman Moksadur)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aslanidou, Ioanna, et al. (författare)
  • Micro Gas Turbines in the Future Smart Energy System : Fleet Monitoring, Diagnostics, and System Level Requirements
  • 2021
  • Ingår i: Frontiers in Mechanical Engineering. - : Frontiers Media S.A.. - 2297-3079. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • The energy generation landscape is changing, pushed by stricter regulations for emissions control and green energy generation. The limitations of renewable energy sources, however, require flexible energy production sources to supplement them. Micro gas turbine based combined heat and power plants, which are used for domestic applications, can fill this gap if they become more reliable. This can be achieved with the use of an engine monitoring and diagnostics system: real-time engine condition monitoring and fault diagnostics results in reduced operating and maintenance costs and increased component and engine life. In order to allow the step change in the connection of small engines to the grid, a fleet monitoring system for micro gas turbines is required. A proposed framework combines a physics-based model and a data-driven model with machine learning capabilities for predicting system behavior, and includes a purpose-developed diagnostic tool for anomaly detection and classification for a multitude of engines. The framework has been implemented on a fleet of micro gas turbines and some of the lessons learned from the demonstration of the concept as well as key takeaways from the general literature are presented in this paper. The extension of fleet monitoring to optimal operation and production planning in relation to the needs of the grid will allow the micro gas turbines to fit in the future green energy system, connect to the grid, and trade in the energy market. The requirements on the system level for the widespread use of micro gas turbines in the energy system are addressed in the paper. A review of the current solutions in fleet monitoring and diagnostics, generally developed for larger engines, is included, with an outlook into a sustainable future.
  •  
2.
  • Aslanidou, Ioanna, et al. (författare)
  • Towards an Integrated Approach for Micro Gas Turbine Fleet Monitoring, Control and Diagnostics
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • Real-time engine condition monitoring and fault diagnostics results in reduced operating and maintenance costs and increased component and engine life. Prediction of faults can change the maintenance model of a system from a fixed maintenance interval to a condition based maintenance interval, further decreasing the total cost of ownership of a system. Technologies developed for engine health monitoring and advanced diagnostic capabilities are generally developed for larger gas turbines, and generally focus on a single system; no solutions are publicly available for engine fleets. This paper presents a concept for fleet monitoring finely tuned to the specific needs of micro gas turbines. The proposed framework includes a physics-based model and a data-driven model with machine learning capabilities for predicting system behaviour, combined with a diagnostic tool for anomaly detection and classification. The integrated system will develop advanced diagnostics and condition monitoring for gas turbines with a power output under 100 kW.
  •  
3.
  •  
4.
  • Dahlquist, Erik, 1951-, et al. (författare)
  • AI Overview : Methods and Structures
  • 2021. - 1
  • Ingår i: AI and Learning Systems - Industrial Applications and Future Directions. - : IntechIntechOpen. - 9781789858778 - 9781839686016
  • Bokkapitel (refereegranskat)abstract
    • This paper presents an overview of different methods used in what is normally called AI-methods today. The methods have been there for many years, but now have built a platform of methods complementing each other and forming a cluster of tools to be used to build “learning systems”. Physical and statistical models are used together and complemented with data cleaning and sorting. Models are then used for many different applications like output prediction, soft sensors, fault detection, diagnostics, decision support, classifications, process optimization, model predictive control, maintenance on demand and production planning. In this chapter we try to give an overview of a number of methods, and how they can be utilized in process industry applications.
  •  
5.
  • Fentaye, Amare Desalegn, et al. (författare)
  • Hybrid model-based and data-driven diagnostic algorithm for gas turbine engines
  • 2020
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884140
  • Konferensbidrag (refereegranskat)abstract
    • Data-driven algorithms require large and comprehensive training samples in order to provide reliable diagnostic solutions. However, in many gas turbine applications, it is hard to find fault data due to proprietary and liability issues. Operational data samples obtained from end-users through collaboration projects do not represent fault conditions sufficiently and are not labeled either. Conversely, model-based methods have some accuracy deficiencies due to measurement uncertainty and model smearing effects when the number of gas path components to be assessed is large. The present paper integrates physics-based and data-driven approaches aiming to overcome this limitation. In the proposed method, an adaptive gas path analysis (AGPA) is used to correct measurement data against the ambient condition variations and normalize. Fault signatures drawn from the AGPA are used to assess the health status of the case engine through a Bayesian network (BN) based fault diagnostic algorithm. The performance of the proposed technique is evaluated based on five different gas path component faults of a three-shaft turbofan engine, namely intermediate-pressure compressor fouling (IPCF), high-pressure compressor fouling (HPCF), high-pressure turbine erosion (HPTE), intermediate-pressure turbine erosion (IPTE), and low-pressure turbine erosion (LPTE). Robustness of the method under measurement uncertainty has also been tested using noise-contaminated data. Moreover, the fault diagnostic effectiveness of the BN algorithm on different number and type of measurements is also examined based on three different sensor groups. The test results verify the effectiveness of the proposed method to diagnose single gas path component faults correctly even under a significant noise level and different instrumentation suites. This enables to accommodate measurement suite inconsistencies between engines of the same type. The proposed method can further be used to support the gas turbine maintenance decision-making process when coupled with overall Engine Health Management (EHM) systems.
  •  
6.
  • Olsson, Tomas, et al. (författare)
  • A data-driven approach for predicting long-term degradation of a fleet of micro gas turbines
  • 2021
  • Ingår i: Energy and AI. - : Elsevier BV. - 2666-5468. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Predictive health monitoring of micro gas turbines can significantly increase the availability and reduce the operating and maintenance costs. Methods for predictive health monitoring are typically developed for large-scale gas turbines and have often focused on single systems. In an effort to enable fleet-level health monitoring of micro gas turbines, this work presents a novel data-driven approach for predicting system degradation over time. The approach utilises operational data from real installations and is not dependent on data from a reference system. The problem was solved in two steps by: 1) estimating the degradation from time-dependent variables and 2) forecasting into the future using only running hours. Linear regression technique is employed both for the estimation and forecasting of degradation. The method was evaluated on five different systems and it is shown that the result is consistent (r>0.8) with an existing method that computes corrected values based on data from a reference system, and the forecasting had a similar performance as the estimation model using only running hours as an input.
  •  
7.
  • Rahman, Moksadur, 1989-, et al. (författare)
  • A Framework for Learning System for Complex Industrial Processes
  • 2020. - 1
  • Ingår i: AI and Learning Systems - Industrial Applications and Future Directions. - : IntechOpen. - 9781789858785 ; , s. 29-
  • Bokkapitel (refereegranskat)abstract
    • Due to the intense price-based global competition, rising operating cost, rapidly changing economic conditions and stringent environmental regulations, modern process and energy industries are confronting unprecedented challenges to maintain profitability. Therefore, improving the product quality and process efficiency while reducing the production cost and plant downtime are matters of utmost importance. These objectives are somewhat counteracting, and to satisfy them, optimal operation and control of the plant components are essential. Use of optimization not only improves the control and monitoring of assets, but also offers better coordination among different assets. Thus, it can lead to extensive savings in the energy and resource consumption, and consequently offer reduction in operational costs, by offering better control, diagnostics and decision support. This is one of the main driving forces behind developing new methods, tools and frameworks. In this chapter, a generic learning system architecture is presented that can be retrofitted to existing automation platforms of different industrial plants. The architecture offers flexibility and modularity, so that relevant functionalities can be selected for a specific plant on an as-needed basis. Various functionalities such as soft-sensors, outputs prediction, model adaptation, control optimization, anomaly detection, diagnostics and decision supports are discussed in detail.
  •  
8.
  • Rahman, Moksadur, 1989-, et al. (författare)
  • A review on the modeling, control and diagnostics of continuous pulp digesters
  • 2020
  • Ingår i: Processes. - : MDPI AG. - 2227-9717. ; 8:10, s. 1-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Being at the heart of modern pulp mills, continuous pulp digesters have attracted much attention from the research community. In this article, a comprehensive review in the area of modeling, control and diagnostics of continuous pulp digesters is conducted. The evolution of research focus within these areas is followed and discussed. Particular effort has been devoted to identifying the state-of-the-art and the research gap in a summarized way. Finally, the current and future research directions in the areas have been analyzed and discussed. To date, digester modeling following the Purdue approach, Kappa number control using model predictive controllers and health index-based diagnostic approaches by utilizing different statistical methods have dominated the field. While the rising research interest within the field is evident, we anticipate further developments in advanced sensors and integration of these sensors for improving model prediction and controller performance; and the exploration of different AI-based approaches will be at the core of future research.
  •  
9.
  • Rahman, Moksadur, 1989-, et al. (författare)
  • An Approach For Feedforward Model Predictive Control For Pulp and Paper Applications : Challenges And The Way Forward
  • 2017
  • Ingår i: Paper Conference and Trade Show, PaperCon 2017. - : TAPPI Press. - 9781510847286 ; , s. 1441-1450
  • Konferensbidrag (refereegranskat)abstract
    • Due to the naturally varying feedstock, significant residence time, insufficient measurements and complex nature of the delignification process, producing pulp with consistent quality i.e. stable kappa number with sufficiently high yield is a challenging task that requires multi-variable process control. A wide variety of control structures, ranging from classical concepts like cascade control, feedforward, ratio control, and parallel control to more modern concepts like model-based predictive control, is used in pulp and paper industries all over the world. In this paper, a survey of model-based predictive control will be presented along with the control challenges that lie within the chemical pulping process. The potential of this control concept for overcoming the aforementioned technical challenges will also be discussed in the second part of the paper. Particular focus will be given on the use of near-infrared spectroscopy based soft-sensors coupled with dynamic process models as an enabler for feedforward model-based predictive control. Overall, the proposed control concept is expected to significantly improve process performance, in the presence of measurement noise and various complex chemical process uncertainties common in pulp and paper applications.
  •  
10.
  • Rahman, Moksadur, 1989-, et al. (författare)
  • An Approach for Feedforward Model Predictive Control of Continuous Pulp Digesters
  • 2019
  • Ingår i: Processes. - : MDPI AG. - 2227-9717. ; 7:9, s. 602-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Kappa number variability at the continuous digester outlet is a major concern for pulp and paper mills. It is evident that the aforementioned variability is strongly linked to the feedstock wood properties, particularly lignin content. Online measurement of lignin content utilizing near-infrared spectroscopy at the inlet of the digester is paving the way for tighter control of the blow-line Kappa number. In this paper, an innovative approach of feedforwarding the lignin content to a model predictive controller was investigated with the help of modeling and simulation studies. For this purpose, a physics-based modeling library for continuous pulp digesters was developed and validated. Finally, model predictive control approaches with and without feedforwarding the lignin measurement were evaluated against current industrial control and proportional-integral-derivative (PID) schemes. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy