SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raina Vishakha) "

Sökning: WFRF:(Raina Vishakha)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ghosh, Aishee, et al. (författare)
  • Proximal discrepancies in intrinsic atomic interaction determines comparative in vivo biotoxicity of Chlorpyrifos and 3,5,6-trichloro-2-pyridinol in embryonic zebrafish
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 913
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioaccumulation of Chlorpyrifos (CP) as pesticides due to their aggrandized use in agriculture has raised serious concern on the health of ecosystem and human beings. Moreover, their degraded products like 3,5,6-trichloro-2pyridinol (TCP) has enhanced the distress due to their unpredictable biotoxicity. This study evaluates and deduce the comparative in vivo mechanistic biotoxicity of CP and TCP with zebrafish embryos through experimental and computational approach. Experimental cellular and molecular analysis showed higher induction of morphological abnormalities, oxidative stress and apoptosis in TCP exposed embryos compared to CP exposure due to upregulation of metabolic enzymes like Zhe1a, Sod1 and p53. Computational analysis excavated the differential discrepancies in intrinsic atomic interaction as a reason of disparity in biotoxicity of CP and TCP. The mechanistic differences were deduced due to the differential accumulation and internalisation leading to variable interaction with metabolic enzymes for oxidative stress and apoptosis causing physiological and morphological abnormalities. The study unravelled the information of in vivo toxicity at cellular and molecular level to advocate the attention of taking measures for management of CP as well as TCP for environmental and human health.
  •  
2.
  • Kumari, Khushbu, et al. (författare)
  • Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 161
  • Tidskriftsartikel (refereegranskat)abstract
    • Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of lowcost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dosedependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 +/- 2.3 mg/ml.
  •  
3.
  • Kumari, Khushbu, et al. (författare)
  • Biosurfactant-functionalized Silver nanoparticles infer intrinsic proximal interaction via Lysine and glutamic acid for reduced in vivo molecular biotoxicity with embryonic zebrafish through oxidative stress and apoptosis
  • 2023
  • Ingår i: Journal of Environmental Chemical Engineering. - : Elsevier BV. - 2213-3437. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The surge of silver nanoparticles (AgNPs) utilization in daily products has raised the concern over their biotoxicity. The concerned biomedical and environmental biotoxicity has raised the quest of biomolecules for the synthesis of AgNPs with better biocompatibility. The emergence of biogenic biosurfactants has sought attention to solve the limitation of synthesizing controlled, stable and biocompatible nanoparticles; owing to their peculiar property of amphiphilic nature. This study provides a novel approach for functionalizing the silver nanoparticles (AgNPs) using lipopeptide biosurfactant extracted from Brevibacterium casei LS14 for higher in vivo environmental biocompatibility. Microbial surfactant was extracted, purified, and characterized using nuclear magnetic resonance (NMR) showing the presence of chemical moieties like carboxyl, methoxy, and amide. Successful functionalization of AgNP termed "F-AgNP" was done to produce AgNPs with a size of 45.0 & PLUSMN; 2.1 nm. The optical characterization of F-AgNP showed an SPR peak at 404 nm in UV-Visible spectra and zeta potential of - 25.5 & PLUSMN; 8.5 mV. In vivo molecular cytotoxicity analysis with embryonic zebrafish determined an LC50 of 50.2 & mu;g/ml for F-AgNP compared to 33.6 & mu;g/ml of unfunctionalized AgNP (U-AgNP). The mechanistic evaluation depicted the concentration-dependent higher cellular and molecular biocompatibility of F-AgNP compared to U-AgNP with less ROS and apoptosis induction due internalization and interaction of F-AgNP with different amino acids of metabolic proteins like Sod1 and P53 proteins via hydrogen bonds having a variable bond-length to influence their expression. The study delineated the molecular mechanism and suggested a sustainable approach to functionalize AgNP using biosurfactants with for biomedical and environmental applications.
  •  
4.
  • Kumari, Khushbu, et al. (författare)
  • The paradigm of prophylactic viral outbreaks measures by microbial biosurfactants
  • 2023
  • Ingår i: Journal of Infection and Public Health. - : Elsevier. - 1876-0341 .- 1876-035X. ; 16:4, s. 575-587
  • Forskningsöversikt (refereegranskat)abstract
    • The recent emergence and outbreak of the COVID-19 pandemic confirmed the incompetence of countries across the world to deal with a global public health emergency. Although the recent advent of vaccines is an important prophylactic measure, effective clinical therapy for SARS-Cov-2 is yet to be discovered. With the increasing mortality rate, research has been focused on understanding the pathogenic mechanism and clinical parameters to comprehend COVID-19 infection and propose new avenues for naturally occurring molecules with novel therapeutic properties to alleviate the current situation. In accordance with recent clinical studies and SARS-CoV-2 infection markers, cytokine storm and oxidative stress are entwined pathogenic processes in COVID-19 progression. Lately, Biosurfactants (BSs) have been studied as one of the most advanced biomolecules of microbial origin with anti-inflammatory, antioxidant, antiviral properties, antiadhesive, and antimicrobial properties. Therefore, this review inspects available literature and proposes biosurfactants with these properties to be encouraged for their extensive study in dealing with the current pandemic as new pharmaceutics in the prevention and control of viral spread, treating the symptoms developed after the incubation period through different therapeutic approaches and playing a potential drug delivery model.
  •  
5.
  • Mohanty, Swabhiman, et al. (författare)
  • In vivo intrinsic atomic interaction infer molecular eco-toxicity of industrial TiO(2 )nanoparticles via oxidative stress channelized steatosis and apoptosis in Paramecium caudatum
  • 2022
  • Ingår i: Ecotoxicology and Environmental Safety. - : Elsevier. - 0147-6513 .- 1090-2414. ; 241
  • Tidskriftsartikel (refereegranskat)abstract
    • The ecotoxicological effect of after-usage released TiO2 nanoparticles in aquatic resources has been a major concern owing to their production and utilization in different applications. Addressing the issue, this study investigates the detailed in vivo molecular toxicity of TiO2 nanoparticles with Paramecium caudatum. TiO2 nano particles were synthesized at a lab scale using high energy ball milling technique; characterized for their physicochemical properties and investigated for their ecotoxicological impact on oxidative stress, steatosis, and apoptosis of cells through different biochemical analysis, flow cytometry, and fluorescent microscopy. TiO2 nanoparticles; TiO2 (N15); of size 36 +/- 12 nm were synthesized with a zeta potential of 20.2 +/- 8.8 mV and bandgap of 4.6 +/- 0.3 eV and exhibited a blue shift in UV-spectrum. Compared to the Bulk TiO2, the TiO2 (N15) exhibited higher cytotoxicity with a 24 h LC50 of 202.4 mu g/ml with P. Caudatum. The mechanism was elucidated as the size and charge-dependent internalization of nanoparticles leading to abnormal physiological metabolism in oxidative stress, steatosis, and apoptosis because of their influential effect on the activity of metabolic proteins like SOD, GSH, MDA, and catalase. The study emphasized the controlled usage TiO2 nanoparticles in daily activity with a concern for ecological and biomedical aspects.
  •  
6.
  • Nayak, Tanmaya, et al. (författare)
  • Synergistic degradation of Chlorpyrifos by modified solar Photo-Fenton process with bacterial metabolism reduces in vivo biotoxicity in zebrafish (Danio rerio)
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 891
  • Tidskriftsartikel (refereegranskat)abstract
    • The extensive use of Chlorpyrifos (CP) as insecticide has raised concern to their hazardous impact on human health and ecosystems. Bioremediation has been proved as one of the key eco-compatible method for reducing these environ-mental toxicants. This study explores and evaluate the effectiveness of a combined process including solar Photo-Fenton process followed by bacterial degradation using Ochrobactrum sp. CPD-03 for effective CP degradation in wastewater. Moreover, the in vivo molecular biotoxicity of CP and degraded CP has been evaluated with embryonic zebrafish. The solar Photo-Fenton treatment showed CP degradation efficiency of-42 % in 4 h and-92 % in 96 h with combined bacterial degradation process. In vivo biotoxicity analysis showed increased survivability of embryonic zebrafish exposed to CP with CPD-03 in water with lesser morphological abnormalities. The mechanistic molecular analysis showed decreased acetylcholinesterase inhibition and GST activity in embryos exposed to CP with CPD-03 for a lesser apoptosis due to influential intrinsic interaction with metabolic proteins. The study advocated to the use of solar Photo-Fenton process followed by bacterial degradation for an efficient ecological degradation of CP for effec-tive reduction of in vivo biotoxicity.
  •  
7.
  • Singh, Khushbu, et al. (författare)
  • Hydoxylated β- and δ-Hexacholorocyclohexane metabolites infer influential intrinsic atomic pathways interaction to elicit oxidative stress-induced apoptosis for bio-toxicity
  • 2022
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexachlorocyclohexane (HCH) has been recognized as an effective insecticide to protect crops against grasshoppers, cohort insects, rice insects, wireworms, and other agricultural pests and; for the control of vector-borne diseases such as malaria. It is a cyclic, saturated hydrocarbon, which primarily exists as five different stable isomers in the environment. Though the use of HCH is banned in most countries owing to its adverse effects on the environment, its metabolites still exist in soil and groundwater, because of its indiscriminate applications. In this study, a dose-dependent toxicity assay of the HCH isomers isolated from soil and water samples of different regions of Odisha, India was performed to assess the in vivo developmental effects and oxidative stress in zebrafish embryos. Toxicity analysis revealed a significant reduction in hatching and survivability rate along with morphological deformities (edema, tail malformations, spinal curvature) upon an increase in the concentration of HCH isomers; beta isomer exhibiting maximum toxicity (p < 0.05). Oxidative stress assay showed that ROS and apoptosis were highest in the fish exposed to β-2 and δ-2 isomers of HCH in comparison to the untreated one. Zebrafish proved to be a useful biological model to assess the biological effects of HCH isomers. In addition, the results suggest the implementation of precautionary measures to control the use of organochlorine compounds that can lead to a decrease in the HCH isomers in the field for a healthier environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy