SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raines Jim) "

Sökning: WFRF:(Raines Jim)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson, Tomas, et al. (författare)
  • Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets
  • 2016
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 129, s. 61-73
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated MESSENGER magnetic field data from the Mercury magnetosheath and near solar wind, to identify isolated magnetic field structures (defined as clear, isolated changes in the field magnitude). Their properties are studied in order to determine if they may be considered as analogues to plasmoids and jets known to exist in Earth's magnetosheath. Both isolated decreases of the magnetic field absolute value ('negative magnetic field structures') and increases ('positive structures') are found in the magnetosheath, whereas only negative structures are found in the solar wind. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggests that they are analogous to diamagnetic plasmoids found in Earth's magnetosheath and near solar wind. The latter have earlier been identified with solar wind magnetic holes. Positive magnetic field structures are only found in the magnetosheath, concentrated to a region relatively close to the magnetopause. Their proximity to the magnetopause, their scale sizes, and the association of a majority of the structures with bipolar magnetic field signatures identify them as flux transfer events (which generally are associated with a decrease of plasma density in the magnetosheath). The positive magnetic field structures are therefore not likely to be analogous to terrestrial paramagnetic plasmoids but possibly to a sub-population of magnetosheath jets. At Earth, a majority of magnetosheath jets are associated with the quasi-parallel bow shock. We discuss some consequences of the findings of the present investigation pertaining to the different nature of the quasi-parallel bow shock at Mercury and Earth.
  •  
2.
  • Karlsson, Tomas, 1964-, et al. (författare)
  • Short large-amplitude magnetic structures (SLAMS) at Mercury observed by MESSENGER
  • 2024
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 42:1, s. 117-130
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first observations of short large-amplitude magnetic structures (denoted SLAMS) at Mercury. We have investigated approximately 4 years of MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) data to identify SLAMS in the Mercury foreshock. Defining SLAMS as magnetic field compressional structures, with an increase in magnetic field strength of at least twice the background magnetic field strength, when MESSENGER is located in the solar wind, we find 435 SLAMS. The SLAMS are found either in regions of a general ultra-low frequency (ULF) wave field, at the boundary of such a ULF wave field, or in a few cases isolated from the wave field. We present statistics on several properties of the SLAMS, such as temporal scale size, amplitude, and the presence of whistler-like wave emissions. We find that SLAMS are mostly found during periods of low interplanetary magnetic field strength, indicating that they are more common for higher solar wind Alfv & eacute;nic Mach number ( M A ). We use the Tao solar wind model to estimate solar wind parameters to verify that M A is indeed larger during SLAMS observations than otherwise. Finally, we also investigate how SLAMS observations are related to foreshock geometry.
  •  
3.
  • Sánchez-Cano, Beatriz, et al. (författare)
  • Solar Energetic Particle Events Detected in the Housekeeping Data of the European Space Agency's Spacecraft Flotilla in the Solar System
  • 2023
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 21:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the growing importance of planetary Space Weather forecasting and radiation protection for science and robotic exploration and the need for accurate Space Weather monitoring and predictions, only a limited number of spacecraft have dedicated instrumentation for this purpose. However, every spacecraft (planetary or astronomical) has hundreds of housekeeping sensors distributed across the spacecraft, some of which can be useful to detect radiation hazards produced by solar particle events. In particular, energetic particles that impact detectors and subsystems on a spacecraft can be identified by certain housekeeping sensors, such as the Error Detection and Correction (EDAC) memory counters, and their effects can be assessed. These counters typically have a sudden large increase in a short time in their error counts that generally match the arrival of energetic particles to the spacecraft. We investigate these engineering datasets for scientific purposes and perform a feasibility study of solar energetic particle event detections using EDAC counters from seven European Space Agency Solar System missions: Venus Express, Mars Express, ExoMars-Trace Gas Orbiter, Rosetta, BepiColombo, Solar Orbiter, and Gaia. Six cases studies, in which the same event was observed by different missions at different locations in the inner Solar System are analyzed. The results of this study show how engineering sensors, for example, EDAC counters, can be used to infer information about the solar particle environment at each spacecraft location. Therefore, we demonstrate the potential of the various EDAC to provide a network of solar particle detections at locations where no scientific observations of this kind are available.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy