SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Raiola M.) "

Search: WFRF:(Raiola M.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Discetti, S., et al. (author)
  • Characterization of very-large-scale motions in high-Re pipe flows
  • 2019
  • In: Experimental Thermal and Fluid Science. - : Elsevier. - 0894-1777 .- 1879-2286. ; , s. 1-8
  • Journal article (peer-reviewed)abstract
    • Very-large-scale structures in pipe flows are characterized using an extended Proper Orthogonal Decomposition (POD)-based estimation. Synchronized non-time-resolved Particle Image Velocimetry (PIV) and time-resolved, multi-point hot-wire measurements are integrated for the estimation of turbulent structures in a pipe flow at friction Reynolds numbers of 9500 and 20000. This technique enhances the temporal resolution of PIV, thus providing a time-resolved description of the dynamics of the large-scale motions. The experiments are carried out in the CICLoPE facility. A novel criterion for the statistical characterization of the large-scale motions is introduced, based on the time-resolved dynamically-estimated POD time coefficients. It is shown that high-momentum events are less persistent than low-momentum events, and tend to occur closer to the wall. These differences are further enhanced with increasing Reynolds number.
  •  
2.
  • Mallor, Fermin, et al. (author)
  • Modal decomposition of flow fields and convective heat transfer maps : An application to wall-proximity square ribs
  • 2019
  • In: Experimental Thermal and Fluid Science. - : Elsevier. - 0894-1777 .- 1879-2286. ; , s. 517-527
  • Journal article (peer-reviewed)abstract
    • In this work the modal decomposition of convective heat transfer distributions in turbulent flows is explored. The organization and thermal footprint of the turbulent flow features generated downstream of wall-proximity two-dimensional square ribs immersed in a turbulent boundary layer are investigated experimentally. This study employs modal decomposition to investigate whether this analysis can allow identifying which characteristics of the flow topology are responsible for the Nusselt-number augmentation, aiming to uncover the underlying physics of heat-transfer enhancement. Heat transfer and flow velocity measurements are performed at a Reynolds number (based on the free-stream velocity and rib side-length) equal to 4600. Square ribs are tested for two different gap spacings from the wall (0.25 and 0.5 ribs side-length) and in wall-attached configuration. A low-thermal-inertia heat transfer sensor coupled with high-repetition-rate Infrared (IR) thermography is designed to study the unsteady variation of the convective heat-transfer coefficient downstream of the obstacles. Flow-field measurements are performed with non-time-resolved Particle Image Velocimetry (PIV). A modal analysis with Proper Orthogonal Decomposition (POD) is applied to both convective heat-transfer maps and velocity-fields. The comparison of the Nusselt-number spatial modes of the clean turbulent boundary layer configuration and of the configurations with the ribs shows a variation of the spatial pattern associated with oscillations with strong spanwise coherence, opposed to the thin elongated streaks which dominate the convective heat transfer in the clean turbulent boundary layer. In configurations where the convective heat transfer is enhanced by coherent structures located close to the wall, similar eigenspectra are observed for both flow field and convective heat transfer modes. The results of the modal analysis support a picture of a direct relation between the coherence of near-wall flow features and heat-transfer augmentation, providing a statistical evidence for the fact that near-wall coherent eddies are extremely efficient in enhancing heat transfer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view