SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rakers C) "

Sökning: WFRF:(Rakers C)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dohmann, H., et al. (författare)
  • The (d,2He) reaction on Mo96 and the double-β decay matrix elements for Zr96
  • 2008
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 78:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The 96Mo(d,2He)96Nb charge-exchange reaction was investigated at an incident energy of Ed=183.5 MeV. An excitation-energy resolution of 110 keV was achieved. The experiment was performed at KVI, Groningen, using the magnetic spectrometer BBS at three angular positions: 0°,2.5°, and 6°. We found that below 6 MeV almost the entire Gamow-Teller (GT+) strength is concentrated in a single state at 0.69 MeV excitation energy. As Mo96 is the daughter of the ?? decay nucleus Zr96, the present result provides information about the nuclear matrix elements active in the 2??? decay of Zr96.
  •  
2.
  • Fustin, JM, et al. (författare)
  • Methylation deficiency disrupts biological rhythms from bacteria to humans
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 211-
  • Tidskriftsartikel (refereegranskat)abstract
    • The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies.
  •  
3.
  • Grewe, E. W., et al. (författare)
  • Studies on the double-beta decay nucleus Zn-64 using the (d,He-2) reaction
  • 2008
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 77:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The (d,He-2) charge-exchange reaction on the double-beta decay (beta beta) nucleus Zn-64 has been studied at an incident energy of 183 MeV. The two protons in the S-1(0) state (indicated as He-2) were both momentum analyzed and detected simultaneously by the BBS magnetic spectrometer and its position-sensitive detector. He-2 spectra with a resolution of about 115 keV (FWHM) have been obtained allowing identification of many levels in the residual nucleus Cu-64 with high precision. Zn-64 is one of the rare cases undergoing a beta beta decay in beta(+) direction. In the experiment presented here, Gamow-Teller (GT(+)) transition strengths have been extracted. Together with the GT(-) transition strengths from Ni-64(He-3,t) data to the same intermediate nucleus Cu-64, the nuclear matrix elements of the beta beta decay of Zn-64 have been evaluated. Finally, the GT(+/-) distributions are compared with shell-model calculations and a critical assessment is given of the various residual interactions presently employed for the pf shell.
  •  
4.
  •  
5.
  • Rakers, Cordula, et al. (författare)
  • Stroke target identification guided by astrocyte transcriptome analysis
  • 2018
  • Ingår i: Glia. - : John Wiley & Sons. - 0894-1491 .- 1098-1136. ; 67:4, s. 619-633
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrocytes support normal brain function, but may also contribute to neurodegeneration when they become reactive under pathological conditions such as stroke. However, the molecular underpinnings of this context-dependent interplay between beneficial and detrimental properties in reactive astrogliosis have remained incompletely understood. Therefore, using the RiboTag technique, we immunopurified translating mRNAs specifically from astrocytes 72 hr after transient middle cerebral artery occlusion in mice (tMCAO), thereby generating a stroke-specific astroglial translatome database. We found that compared to control brains, reactive astrocytes after tMCAO show an enrichment of transcripts linked to the A2 phenotype, which has been associated with neuroprotection. However, we found that astrocytes also upregulate a large number of potentially neurotoxic genes. In total, we identified the differential expression of 1,003 genes and 38 transcription factors, of which Stat3, Sp1, and Spi1 were the most prominent. To further explore the effects of Stat3-mediated pathways on stroke pathogenesis, we subjected mice with an astrocyte-specific conditional deletion of Stat3 to tMCAO, and found that these mice have reduced stroke volume and improved motor outcome 72 hr after focal ischemia. Taken together, our study extends the emerging database of novel astrocyte-specific targets for stroke therapy, and supports the role of astrocytes as critical safeguards of brain function in health and disease.
  •  
6.
  • rakers, s, et al. (författare)
  • Antimicrobial peptides (AMPs) from fish epidermis: Perspectives for investigative dermatology
  • 2013
  • Ingår i: Journal of Investigative Dermatology. - 0022-202X. ; 133, s. 1140-1149
  • Forskningsöversikt (refereegranskat)abstract
    • Mammalian and fish skin share protective activities against environments that are rich in infectious agents. Fish epidermis is endowed with an extrinsic barrier consisting of a mucus layer and antimicrobial peptides (AMPs). These operate together as a protective chemical shield. As these AMPs are evolutionarily well preserved and also found in higher vertebrate skin (including human epidermis), fish skin offers a unique opportunity to study the origins of innate antimicrobial defense systems. Furthermore, the broad spectrum of fish mucus antimicrobial activities renders piscine AMPs interesting to investigative dermatology, as these may become exploitable for various indications in clinical dermatology. Therefore, this article aims at casting light on fish mucus, the evolutionary relationship between human and fish AMPs, and the latter’s antibacterial, antifungal, and even antiviral activities. Moreover, we develop dermatological lessons from, and sketch potential future clinical applications of, fish mucus and piscine AMPs.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy