SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ralser Markus) "

Sökning: WFRF:(Ralser Markus)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kleeman, Sam O, et al. (författare)
  • Cystatin C is glucocorticoid responsive, directs recruitment of Trem2+ macrophages, and predicts failure of cancer immunotherapy.
  • 2023
  • Ingår i: Cell genomics. - 2666-979X. ; 3:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC's systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score (PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immunotherapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in 685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination cancer immunotherapy.
  •  
2.
  • Kost, Christian, et al. (författare)
  • Metabolic exchanges are ubiquitous in natural microbial communities
  • 2023
  • Ingår i: Nature Microbiology. - 2058-5276. ; 8:12, s. 2244-2252
  • Forskningsöversikt (refereegranskat)abstract
    • Microbial communities drive global biogeochemical cycles and shape the health of plants and animals—including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions—for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.
  •  
3.
  • Mülleder, Michael, et al. (författare)
  • Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities
  • 2016
  • Ingår i: F1000Research. - : F1000 Research Ltd. - 1759-796X .- 2046-1402. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Auxotrophic markers are useful tools in cloning and genome editing, enable a large spectrum of genetic techniques, as well as facilitate the study of metabolite exchange interactions in microbial communities. If unused background auxotrophies are left uncomplemented however, yeast cells need to be grown in nutrient supplemented or rich growth media compositions, which precludes the analysis of biosynthetic metabolism, and which leads to a profound impact on physiology and gene expression. Here we present a series of 23 centromeric plasmids designed to restore prototrophy in typical Saccharomyces cerevisiae laboratory strains. The 23 single-copy plasmids complement for deficiencies in HIS3, LEU2, URA3, MET17 or LYS2 genes and in their combinations, to match the auxotrophic background of the popular functional-genomic yeast libraries that are based on the S288c strain. The plasmids are further suitable for designing self-establishing metabolically cooperating (SeMeCo) communities, and possess a uniform multiple cloning site to exploit multiple parallel selection markers in protein expression experiments.
  •  
4.
  • Vernardis,, et al. (författare)
  • The Impact of Acute Nutritional Interventions on the Plasma Proteome
  • 2023
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 108:8, s. 2087-2098
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. Objective: Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. Methods: We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. Results: Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. Conclusion: Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy