SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ramstad R.) "

Sökning: WFRF:(Ramstad R.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hall, B. E. S., et al. (författare)
  • Annual variations in the Martian bow shock location as observed by the Mars Express mission
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:11, s. 11474-11494
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by similar to 0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39 R-M around aphelion and proceeds to a maximum of 2.65 R-M around perihelion, presenting an overall variation of similar to 11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of similar to 2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.
  •  
3.
  • Sanchez-Cano, B., et al. (författare)
  • Mars plasma system response to solar wind disturbances during solar minimum
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:6, s. 6611-6634
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is a phenomenological description of the ionospheric plasma and induced magnetospheric boundary (IMB) response to two different types of upstream solar wind events impacting Mars in March 2008, at the solar minimum. A total of 16 Mars Express orbits corresponding to five consecutive days is evaluated. Solar TErrestrial RElations Observatory-B (STEREO-B) at 1AU and Mars Express and Mars Odyssey at 1.644AU detected the arrival of a small transient interplanetary coronal mass ejection (ICME-like) on the 6 and 7 of March, respectively. This is the first time that this kind of small solar structure is reported at Mars's distance. In both cases, it was followed by a large increase in solar wind velocity that lasted for similar to 10days. This scenario is simulated with the Wang-Sheeley-Arge (WSA) - ENLIL + Cone solar solar wind model. At Mars, the ICME-like event caused a strong compression of the magnetosheath and ionosphere, and the recovery lasted for similar to 3 orbits (similar to 20h). After that, the fast stream affected the upper ionosphere and the IMB, which radial and tangential motions in regions close to the subsolar point are analyzed. Moreover, a compression in the Martian plasma system is also observed, although weaker than after the ICME-like impact, and several magnetosheath plasma blobs in the upper ionosphere are detected by Mars Express. We conclude that, during solar minimum and at aphelion, small solar wind structures can create larger perturbations than previously expected in the Martian system.
  •  
4.
  • Witasse, O., et al. (författare)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
5.
  • Edberg, Niklas J. T., et al. (författare)
  • Solar wind interaction with comet 67P : Impacts of corotating interaction regions
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:2, s. 949-965
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7AU from the Sun and the neutral outgassing rate approximate to 10(25)-10(26)s(-1), the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30km. The ionospheric low-energy (approximate to 5eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (approximate to 10-100eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.
  •  
6.
  • Voshchepynets, A., et al. (författare)
  • Ions Accelerated by Sounder-Plasma Interaction as Observed by Mars Express
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:11, s. 9802-9814
  • Tidskriftsartikel (refereegranskat)abstract
    • The ion sensor of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment detects accelerated ions during pulses of radio emissions from the powerful topside sounder: the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express. Accelerated ions (O-2(+), O+, and lighter ions) are observed in an energy range up to 800 eV when MARSIS transmits at a frequency close to the plasma frequency. Individual observations consist of almost monoenergetic ion beams aligned with the MARSIS antenna or lying in the plane perpendicular to the antenna. The observed ion beams are often accompanied by a small decrease in the electron flux observed by the electron sensor of Analyzer of Space Plasmas and Energetic Atoms 3. Observations indicate that the voltage applied to the antenna causes charging of the spacecraft to several hundreds of volts by the electrons of the ambient plasma. Positively charged ions are accelerated when the spacecraft discharges.
  •  
7.
  • Andrews, David J., et al. (författare)
  • Plasma observations during the Mars atmospheric "plume" event of March-April 2012
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:4, s. 3139-3154
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial analyses and conclusions from plasma observations made during the reported "Mars plume event" of March-April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator, the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.
  •  
8.
  • Fowler, C. M., et al. (författare)
  • Pioneer Venus Orbiter Observations of Solar Wind Driven Magnetosonic Waves Interacting With the Dayside Venusian Ionosphere
  • 2024
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 51:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We use in situ plasma observations made by the Pioneer Venus Orbiter spacecraft to show for the first time that magnetosonic waves can couple the solar wind to the upper ionosphere and deposit energy there. The waves are generated upstream of Venus, are advected into the shock and propagate across the draped magnetic field, through the magnetosheath and into the dayside upper ionosphere. The magnetosonic waves damp in the upper ionosphere in a region where physical collisions are rare, and electromagnetic forces must control this damping. The waves damp when the ionospheric heavy ion density is a few thousand cm-3 and wave-particle interactions with the dominant O+ ions are postulated as the damping mechanism. Estimates of ion heating rates show that 1%-5% of the O+ ion distribution function could be heated to escape energy in 10-40 s.
  •  
9.
  • Persson, Moa, et al. (författare)
  • The Venusian Atmospheric Oxygen Ion Escape : Extrapolation to the Early Solar System
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 125:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The present atmosphere of Venus contains almost no water, but recent measurements indicate that in its early history, Venus had an Earth-like ocean. Understanding how the Venusian atmosphere evolved is important not only for Venus itself but also for understanding the evolution of other planetary atmospheres. In this study, we quantify the escape rates of oxygen ions from the present Venus to infer the past of the Venusian atmosphere. We show that an extrapolation of the current escape rates back in time leads to the total escape of 0.02-0.6 m of a global equivalent layer of water. This implies that the loss of ions to space, inferred from the present state, cannot account for the loss of an historical Earth-like ocean. We find that the O+ escape rate increases with solar wind energy flux, where more energy available leads to a higher escape rate. Oppositely, the escape rate decreases slightly with increased extreme ultraviolet radiation (EUV) flux, though the small variation of EUV flux over the measured solar cycle may explain the weak dependency. These results indicate that there is not enough energy transferred from the solar wind to Venus' upper atmosphere that can lead to the escape of the atmosphere over the past 3.9 billion years. This means that the Venusian atmosphere did not have as much water in its atmosphere as previously assumed or the present-day escape rates do not represent the historical escape rates at Venus. Otherwise, some other mechanisms have acted to more effectively remove the water from the Venusian atmosphere. Plain Language Summary Today, Venus only has small amounts of water in its atmosphere. In its early history, Venus presumably contained an Earth-like ocean of several meters. The evolution of the atmosphere may have been caused by escape of atmospheric content to space. In this study, we investigate how much the escape of oxygen ions to space could have affected the atmospheric evolution for Venus from measurements of the present-day escape rates. Using measurements of oxygen ions in the vicinity of Venus, we show that the amount of energy available in the solar wind to be transferred to the upper atmosphere of Venus determines how much of the atmosphere escapes. From the evolution of the energy in the solar wind over the past 3.9 billion years, together with the relation between the solar wind energy and oxygen ion escape, we show that in total, about 0.02-0.6 m of water depth, if spread equally over the entire Venusian surface, was lost. This indicates that either Venus did not have as much water as previously assumed or the current escape rates are not representative of the historical escape rates. Otherwise, some other mechanisms must have acted to more effectively remove the water from Venus.
  •  
10.
  • Spitler, Jeff, 1961, et al. (författare)
  • Natural convection in groundwater-filled boreholes used as ground heat exchangers
  • 2016
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 164, s. 352-365
  • Tidskriftsartikel (refereegranskat)abstract
    • In most of the world, borehole heat exchangers used with closed-loop ground source heat pump systems are backfilled with a low permeability grout to prevent water contamination. However, in Scandinavian countries, a different approach is taken - the borehole is sealed at the top and cased down to solid bedrock. The borehole then naturally fills with groundwater in the annular space between the U-tube and the borehole wall. Compared to grouted boreholes, the groundwater filling is advantageous in that it generally results in low borehole thermal resistance due to buoyancy-driven natural convection enhancing the heat transfer. Although this phenomena has been reported in several papers since the late 1980s, no calculation models have been available for use in either design tools or simulation programs. This paper presents experimental measurements from a single well-instrumented borehole under a range of heat transfer rates and annulus temperatures. Nusselt numbers for natural convection in the annulus are correlated against modified Rayleigh number. The results are verified by comparing to borehole thermal resistances predicted with the correlations to actual measurements from a range of boreholes in Sweden and Norway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy