SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rannard Steve P.) "

Sökning: WFRF:(Rannard Steve P.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hern, Faye Y., et al. (författare)
  • Model studies of the sequential and simultaneous statistical modification of dendritic functional groups and their implications within complex polymer architecture synthesis
  • 2017
  • Ingår i: Polymer Chemistry. - : Royal Society of Chemistry. - 1759-9954 .- 1759-9962. ; 8:10, s. 1644-1653
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-synthesis modification of polymers is a synthetically appealing approach to generate a range of samples from a single, well-characterised starting material. When partial or mixed-functionalisation is sought, an inevitable statistical distribution of modification outcomes will lead to considerable variation of chemical structures within the final sample. Here we have comprehensively investigated the postsynthesis sequential/partial and simultaneous mixed modification of xanthate-functional ideal dendrons and used this data to consider the implications for the more complex linear-dendritic hybrids and hyper-branched- polydendron analogues. Although H-1 NMR confirmed the potential to direct the reactions, it was clear from MALDI-TOF studies that very little of the actual targeted structures were generated in the statistical reactions.
  •  
2.
  • Walter, Marie V., 1985- (författare)
  • Novel Porous Films from Functional and Biocompatible Linear-Dendritic Hybrids
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the last decades, the fabrication of ordered nano- and microporous structures has attracted increasing interest due to their specific properties and multiple possible applications in electronics, as templates or in the biological field. The development of such materials has been favored by the introduction of the simple breath-figure templating method in the 1990’s. In order to fully exploit the potential of these porous materials, the use of advanced functional molecules as precursors is essential. One suitable class of molecules is the well-defined linear-dendritic hybrids (LD hybrids) family. The structural variations, multiple end-groups and possible amphiphilicity of these molecules are significant advantages that could lead to highly sophisticated functional materials with potential usage in biology. Therefore, this project was directed towards the synthesis of advanced LD hybrids and the evaluation of their ability to form ordered functional porous films.A degradation and toxicity study was initially conducted on polyester-based 2,2-bis(methylol)propionic acid (bis-MPA) dendrimers under physiological conditions to support the potential usage of these molecules for biological purposes. The materials were found to undergo a relatively fast depolymerization process at pH 7.5. Moreover, the initial dendrimer and its decomposition products were proven to be non-toxic for immune competent cells, allowing for the utilization of these molecules for biological applications.A linear-dendritic-linear hybrid library was successfully synthesized from biocompatible poly(ethylene glycol) (PEG), poly(ε-caprolactone) (PCL) and bis-MPA building blocks using a combination of ring-opening polymerization (ROP)and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The materials, consisting of one long PEG block connected to the focal point of the dendron and several PCL arms attached at its periphery, were used to construct ordered porous films using the breath figure method. The polymeric architecture strongly affected the ordering of the films with a more regular morphology obtained from a more flexible polymer. Changing the semi-crystalline PCL to amorphous polylactide (PLA) also permitted the formation of porous arrays. Interestingly, films obtained from inverted structures possessing one long PCL block and several short PEG chains, also presented a regular morphology. Moreover they could be activated to exhibit multiple surface hydroxyl groups.To increase the number of orthogonal synthetic methodologies available for the preparation of advanced macromolecules, high molecular weight dendritic macrothiols were synthesized. These molecules were efficiently coupled to a number of core molecules via thiol-ene coupling, generating a comprehensive library of dendritic materials. This approach represents an attractive alternative to the commonly used, but potentially toxic, CuAAC.Exploiting the obtained results, a final LD hybrid was synthesized from atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate (HEMA) derivatives and thiol-ene coupling (TEC) with macrothiols. This macromolecule was successfully utilized to form functional ordered porous arrays and the availability of peripheral alkyne functional groups was demonstrated by efficient coupling with fluorescent Rhodamine-B. The HEMA-backbone allowed for the introduction of cross-linkable azide groups that were used to significantly improve the thermal stability of the films from 50 °C to 200 °C. These materials have the potential to be used in applications such as catalysis, in medicine and as sensors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy