SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rapatskiy Leonid) "

Sökning: WFRF:(Rapatskiy Leonid)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cox, Nicholas, et al. (författare)
  • Effect of Ca(2+)/Sr(2+) substitution on the electronic structure of the oxygen-evolving complex of photosystem II : a combined multifrequency EPR, (55)Mn-ENDOR, and DFT study of the S(2) State
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:10, s. 3635-3648
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
  •  
2.
  • Cox, Nicholas, et al. (författare)
  • Electronic Structure of a Weakly Antiferromagnetically Coupled Mn(II)Mn(III) Model Relevant to Manganese Proteins : A Combined EPR, (55)Mn-ENDOR, and DFT Study
  • 2011
  • Ingår i: Inorganic Chemistry. - : American Chemical Society. - 0020-1669 .- 1520-510X. ; 50:17, s. 8238-8251
  • Tidskriftsartikel (refereegranskat)abstract
    • An analysis of the electronic structure of the [Mn(II)Mn(III)(μ-OH)-(μ-piv)(2)(Me(3)tacn)(2)](ClO(4))(2) (PivOH) complex is reported. It displays features that include: (i) a ground 1/2 spin state; (ii) a small exchange (J) coupling between the two Mn ions; (iii) a mono-μ-hydroxo bridge, bis-μ-carboxylato motif; and (iv) a strongly coupled, terminally bound N ligand to the Mn(III). All of these features are observed in structural models of the oxygen evolving complex (OEC). Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) measurements were performed on this complex, and the resultant spectra simulated using the Spin Hamiltonian formalism. The strong field dependence of the (55)Mn-ENDOR constrains the (55)Mn hyperfine tensors such that a unique solution for the electronic structure can be deduced. Large hyperfine anisotropy is required to reproduce the EPR/ENDOR spectra for both the Mn(II) and Mn(III) ions. The large effective hyperfine tensor anisotropy of the Mn(II), a d(5) ion which usually exhibits small anisotropy, is interpreted within a formalism in which the fine structure tensor of the Mn(III) ion strongly perturbs the zero-field energy levels of the Mn(II)Mn(III) complex. An estimate of the fine structure parameter (d) for the Mn(III) of -4 cm(-1) was made, by assuming the intrinsic anisotropy of the Mn(II) ion is small. The magnitude of the fine structure and intrinsic (onsite) hyperfine tensor of the Mn(III) is consistent with the known coordination environment of the Mn(III) ion as seen from its crystal structure. Broken symmetry density functional theory (DFT) calculations were performed on the crystal structure geometry. DFT values for both the isotropic and the anisotropic components of the onsite (intrinsic) hyperfine tensors match those inferred from the EPR/ENDOR simulations described above, to within 5%. This study demonstrates that DFT calculations provide reliable estimates for spectroscopic observables of mixed valence Mn complexes, even in the limit where the description of a well isolated S = 1/2 ground state begins to break down.
  •  
3.
  • Cox, Nicholas, et al. (författare)
  • Electronic Structure of a Weakly Antiferromagnetically Coupled MnIIMnIII Model Relevant to Manganese Proteins : A Combined EPR, 55Mn-ENDOR, and DFT Study
  • 2011
  • Ingår i: Inorganic Chemistry. - : AMER CHEMICAL SOC. - 0020-1669 .- 1520-510X. ; 50:17, s. 8238-8251
  • Tidskriftsartikel (refereegranskat)abstract
    • An analysis of the electronic structure of the [(MnMnIII)-Mn-II(mu-OH)-(mu-piv)(2)(Me(3)tacn)(2)] (ClO4)(2) (PivOH) complex is reported. It displays features that include: (i) a ground 1/2 spin state; (ii) a small exchange (J) coupling between the two Mn ions; (iii) a mono-mu-hydroxo bridge, bis-mu-carboxylato motif; and (iv) a strongly coupled, terminally bound N ligand to the Mn-III. All of these features are observed in structural models of the oxygen evolving complex (OEC). Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) measurements were performed on this complex, and the resultant spectra simulated using the Spin Hamiltonian formalism. The strong field dependence of the Mn-55-ENDOR constrains the Mn-55 hyperfine tensors such that a unique solution for the electronic structure can be deduced. Large hyperfine anisotropy is required to reproduce the EPR/ENDOR spectra for both the Mn-II and Mn-III ions. The large effective hyperfine tensor anisotropy of the Mn-II, a d(5) ion which usually exhibits small anisotropy, is interpreted within a formalism in which the fine structure tensor of the Mn-III ion strongly perturbs the zero-field energy levels of the (MnMnIII)-Mn-II complex. An estimate of the fine structure parameter (d) for the Mn-III of -4 cm(-1) was made, by assuming the intrinsic anisotropy of the Mn-II ion is small. The magnitude of the fine structure and intrinsic (onsite) hyperfine tensor of the Mn-III is consistent with the known coordination environment of the Mn-III ion as seen from its crystal structure. Broken symmetry density functional theory (DFT) calculations were performed on the crystal structure geometry. DFT values for both the isotropic and the anisotropic components of the onsite (intrinsic) hyperfine tensors match those inferred from the EPR/ENDOR simulations described above, to within 5%. This study demonstrates that DFT calculations provide reliable estimates for spectroscopic observables of mixed valence Mn complexes, even in the limit where the description of a well isolated S = 1/2 ground state begins to break down.
  •  
4.
  • Su, Ji-Hu, et al. (författare)
  • The electronic structures of the S(2) states of the oxygen evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol
  • 2011
  • Ingår i: Biochimica et Biophysica Acta. - Amsterdam : Elsevier. - 0006-3002 .- 1878-2434 .- 0005-2728 .- 1879-2650. ; 1807:7, s. 829-840
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-μ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.
  •  
5.
  •  
6.
  • de Lichtenberg, Casper, et al. (författare)
  • Assignment of the slowly exchanging substrate water of nature's water-splitting cofactor
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 121:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
  •  
7.
  •  
8.
  • Navarro, Montserrat Perez, et al. (författare)
  • Ammonia binding to the oxygen-evolving complex of photosystem II identifies the solvent-exchangeable oxygen bridge (µ-oxo) of the manganese tetramer
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:39, s. 15561-15566
  • Tidskriftsartikel (refereegranskat)abstract
    • The assignment of the two substrate water sites of the tetramanganese penta-oxygen calcium (Mn4O5Ca) cluster of photosystem II is essential for the elucidation of the mechanism of biological O-O bond formation and the subsequent design of bio-inspired water-splitting catalysts. We recently demonstrated using pulsed EPR spectroscopy that one of the five oxygen bridges (mu-oxo) exchanges unusually rapidly with bulk water and is thus a likely candidate for one of the substrates. Ammonia, a water analog, was previously shown to bind to the Mn4O5Ca cluster, potentially displacing a water/substrate ligand [Britt RD, et al. (1989) J Am Chem Soc 111(10):3522-3532]. Here we show by a combination of EPR and time-resolved membrane inlet mass spectrometry that the binding of ammonia perturbs the exchangeable mu-oxo bridge without drastically altering the binding/exchange kinetics of the two substrates. In combination with broken-symmetry density functional theory, our results show that (i) the exchangable mu-oxo bridge is O5 {using the labeling of the current crystal structure [Umena Y, et al. (2011) Nature 473(7345):55-60]}; (ii) ammonia displaces a water ligand to the outer manganese (Mn-A4-W1); and (iii) as W1 is trans to O5, ammonia binding elongates the Mn-A4-O5 bond, leading to the perturbation of the mu-oxo bridge resonance and to a small change in the water exchange rates. These experimental results support O-O bond formation between O5 and possibly an oxyl radical as proposed by Siegbahn and exclude W1 as the second substrate water.
  •  
9.
  • Rapatskiy, Leonid, et al. (författare)
  • Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency (17)O-Hyperfine EPR Spectroscopies and Density Functional Theory
  • 2015
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 119:43, s. 13904-13921
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifrequency pulsed EPR data are reported for a series of oxygen bridged (μ-oxo/μ-hydroxo) bimetallic manganese complexes where the oxygen is labeled with the magnetically active isotope (17)O (I = 5/2). Two synthetic complexes and two biological metallocofactors are examined: a planar bis-μ-oxo bridged complex and a bent, bis-μ-oxo-μ-carboxylato bridge complex; the dimanganese catalase, which catalyzes the dismutation of H2O2 to H2O and O2, and the recently identified manganese/iron cofactor of the R2lox protein, a homologue of the small subunit of the ribonuclotide reductase enzyme (class 1c). High field (W-band) hyperfine EPR spectroscopies are demonstrated to be ideal methods to characterize the (17)O magnetic interactions, allowing a magnetic fingerprint for the bridging oxygen ligand to be developed. It is shown that the μ-oxo bridge motif displays a small positive isotropic hyperfine coupling constant of about +5 to +7 MHz and an anisotropic/dipolar coupling of -9 MHz. In addition, protonation of the bridge is correlated with an increase of the hyperfine coupling constant. Broken symmetry density functional theory is evaluated as a predictive tool for estimating hyperfine coupling of bridging species. Experimental and theoretical results provide a framework for the characterization of the oxygen bridge in Mn metallocofactor systems, including the water oxidizing cofactor of photosystem II, allowing the substrate/solvent interface to be examined throughout its catalytic cycle.
  •  
10.
  • Rapatskiy, Leonid, et al. (författare)
  • Detection of the Water-Binding Sites of the Oxygen-Evolving Complex of Photosystem II Using W-Band 17O Electron–Electron Double Resonance-Detected NMR Spectroscopy
  • 2012
  • Ingår i: Journal of the American Chemical Society. - Washington : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 134:40, s. 16619-16634
  • Tidskriftsartikel (refereegranskat)abstract
    • Water binding to the Mn4O5Ca cluster of the oxygen-evolving complex (OEC) of Photosystem II (PSII) poised in the S2 state was studied via H217O- and 2H2O-labeling and high-field electron paramagnetic resonance (EPR) spectroscopy. Hyperfine couplings of coordinating 17O (I = 5/2) nuclei were detected using W-band (94 GHz) electron–electron double resonance (ELDOR) detected NMR and Davies/Mims electron–nuclear double resonance (ENDOR) techniques. Universal 15N (I = 1/2) labeling was employed to clearly discriminate the 17O hyperfine couplings that overlap with 14N (I = 1) signals from the D1-His332 ligand of the OEC (Stich Biochemistry 2011, 50 (34), 7390−7404). Three classes of 17O nuclei were identified: (i) one μ-oxo bridge; (ii) a terminal Mn–OH/OH2 ligand; and (iii) Mn/Ca–H2O ligand(s). These assignments are based on 17O model complex data, on comparison to the recent 1.9 Å resolution PSII crystal structure (Umena Nature 2011, 473, 55−60), on NH3 perturbation of the 17O signal envelope and density functional theory calculations. The relative orientation of the putative 17O μ-oxo bridge hyperfine tensor to the 14N(15N) hyperfine tensor of the D1-His332 ligand suggests that the exchangeable μ-oxo bridge links the outer Mn to the Mn3O3Ca open-cuboidal unit (O4 and O5 in the Umena et al. structure). Comparison to literature data favors the Ca-linked O5 oxygen over the alternative assignment to O4. All 17O signals were seen even after very short (≤15 s) incubations in H217O suggesting that all exchange sites identified could represent bound substrate in the S1 state including the μ-oxo bridge. 1H/2H (I = 1/2, 1) ENDOR data performed at Q- (34 GHz) and W-bands complement the above findings. The relatively small 1H/2H couplings observed require that all the μ-oxo bridges of the Mn4O5Ca cluster are deprotonated in the S2 state. Together, these results further limit the possible substrate water-binding sites and modes within the OEC. This information restricts the number of possible reaction pathways for O–O bond formation, supporting an oxo/oxyl coupling mechanism in S4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy