SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ratnasekera J.L.) "

Sökning: WFRF:(Ratnasekera J.L.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bandara, T M W J, 1968, et al. (författare)
  • Combined effect of alkaline cations and organic additives for iodide ion conducting gel polymer electrolytes to enhance efficiency in dye sensitized solar cells
  • 2017
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686. ; 252, s. 208-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Iodide ion conducting electrolytes are intensively studied as effectual electrolytes for dye-sensitized solar cells (DSSCs). However, the nature and concentration of the counter-ion (cation) in the electrolyte exert a profound influence on the performance of the thin film meso-porous TiO2 based DSSCs. A series of gel electrolytes containing the alkaline iodides LiI, NaI, KI, RbI and CsI and polyacrylonitrile (PAN) were fabricated together with the non-volatile plasticizers ethylene carbonate (EC) and propylene carbonate (PC). A similar series was fabricated with the inclusions of performance enhancers (additives) tetrapropylammonium iodide (Pr4NI), the ionic liquid 1-methyl-3-propyl imidazolium iodide (MPII) and 4-tert-butylpyridine (4TBP). The ionic conductivity of the electrolytes was studied in order to investigate its dependence on the nature of the alkaline cation in presence or absence of additives. The conductivities were higher for the electrolytes with the larger cations, namely K+, Rb+ and Cs+. A significant conductivity enhancement was observed in presence of the additives, and this effect was especially noticeable for samples with the smaller cations. The highest conductivity for electrolytes with additives, 3.96 mS cm(-1) at 25 degrees C, is exhibited by KI containing samples. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
2.
  • Bandara, T M W J, 1968, et al. (författare)
  • Dependence of solar cell performance on the nature of alkaline counterion in gel polymer electrolytes containing binary iodides
  • 2017
  • Ingår i: Journal of Solid State Electrochemistry. - : Springer Science and Business Media LLC. - 1432-8488 .- 1433-0768. ; 21:6, s. 1571-1578
  • Tidskriftsartikel (refereegranskat)abstract
    • Performance of dye-sensitized nano-crystalline TiO2 thin film-based photo-electrochemical solar cells (PECSCs) containing gel polymer electrolytes is largely governed by the nature of the cation in the electrolyte. Dependence of the photovoltaic performance in these quasi-solid state PECSCs on the alkaline cation size has already been investigated for single cation iodide salt-based electrolytes. The present study reports the ionic conductivity dependence on the nature of alkaline cations (counterion) in a gel polymer electrolyte based on binary iodides. Polyacrylonitrile-based gel polymer electrolyte series containing binary iodide salts is prepared using one of the alkaline iodides (LiI, NaI, KI, RbI, and CsI) and tetrapropylammonium iodide (Pr4NI). All the electrolytes based on binary salts have shown conductivity enhancement compared to their single cation counterparts. When combined with Pr4NI, each of the Li+, Na+, K+, Rb+, and Cs+ cation containing iodide salts incorporated in the gel electrolytes has shown a room temperature conductivity enhancement of 85.59, 12.03, 12.71, 20.77, and 15.36%, respectively. The conductivities of gel electrolytes containing binary iodide systems with Pr4NI and KI/RbI/CsI are higher and have shown values of 3.28, 3.43, and 3.23 mS cm(-1), respectively at room temperature. The influence of the nature of counterions on the performance of quasi-solid state dye-sensitized solar cells is investigated by assembling two series of cells. All the binary cationic solar cells have shown more or less enhancements of open circuit voltage, short circuit current density, fill factor, and efficiency compared to their single cation counterparts. This work highlights the importance of employing binary cations (a large and a small) in electrolytes intended for quasi-solid state solar cells. The percentage of energy conversion efficiency enhancement shown for the PECSCs made with electrolytes containing Pr4NI along with Li+, Na+, K+, Rb+, and Cs+ iodides is 260.27, 133.65, 65.27, 25.32, and 8.36%, respectively. The highest efficiency of 4.93% is shown by the solar cell containing KI and Pr4NI. However, the highest enhancements of ionic conductivity as well as the energy conversion efficiency were exhibited by the PECSC made with Li+-containing binary cationic electrolyte.
  •  
3.
  • Bandara, T M W J, 1968, et al. (författare)
  • Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells
  • 2016
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 18:16, s. 10873-10881
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature and concentration of cationic species in the electrolyte exert a profound influence on the efficiency of nanocrystalline dye-sensitized solar cells (DSSCs). A series of DSSCs based on gel electrolytes containing five alkali iodide salts (LiI, NaI, KI, RbI and CsI) and polyacrylonitrile with plasticizers were fabricated and studied, in order to investigate the dependence of solar cell performance on the cation size. The ionic conductivity of electrolytes with relatively large cations, K+, Rb+ and Cs+, was higher and essentially constant, while for the electrolytes containing the two smaller cations, Na+ and Li+, the conductivity values were lower. The temperature dependence of conductivity in this series appears to follow the Vogel-Tamman-Fulcher equation. The sample containing the smallest cation shows the lowest conductivity and the highest activation energy of similar to 36.5 meV, while K+, Rb+ and Cs+ containing samples show an activation energy of similar to 30.5 meV. DSSCs based on the gel electrolyte and a TiO2 double layer with the N719 dye exhibited an enhancement in the open circuit voltage with increasing cation size. This can be attributed to the decrease in the recombination rate of electrons and to the conduction band shift resulting from cation adsorption by TiO2. The maximum efficiency value, 3.48%, was obtained for the CsI containing cell. The efficiencies shown in this study are lower compared to values reported in the literature, and this can be attributed to the use of a single salt and the absence of other additives, since the focus of the present study was to analyze the cation effect. The highest short circuit current density of 9.43 mA cm(-2) was shown by the RbI containing cell. The enhancement of the solar cell performance with increasing size of the cation is discussed in terms of the effect of the cations on the TiO2 anode and ion transport in the electrolyte. In liquid electrolyte based DSSCs, the short circuit current density has been reported to decrease with the increasing size of the cation. However, in this work, it follows an opposite trend highlighting a major difference between liquid and quasi-solid electrolytes on the solar cell performance.
  •  
4.
  • Bandara, T M W J, 1968, et al. (författare)
  • Electrical and complex dielectric behaviour of composite polymer electrolyte based on PEO, alumina and tetrapropylammonium iodide
  • 2017
  • Ingår i: Ionics. - : Springer Science and Business Media LLC. - 0947-7047 .- 1862-0760. ; 23:7, s. 1711-1719
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the electrical, dielectric and morphological analysis of composite solid polymer electrolytes containing polyethylene oxide, alumina nano-fillers and tetrapropylammonium iodide are conducted. The temperature dependence of conductivity shows activation energy of 0.23, 0.20 and 0.29 eV for electrolytes containing 0, 5 and 15 wt.% alumina, respectively, when data fitted to the Arrhenius equation. These activation energy values are in good agreement with those determined from dielectric measurements. The result confirms the fact that conductivity is activated by both the mobility and the charge carrier density. The conductivity isotherms demonstrated the existence of two peaks, at 5 and 15 wt.% Al2O3 composition. The highest conductivity values of 2.4 × 10−4, 3.3 × 10−4 and 4.2 × 10−4 S cm−1 are obtained for the sample with 5 wt.% Al2O3 at 0, 12 and 24 °C, respectively, suggesting an enhancement of conductivity compared with that of alumina free samples.
  •  
5.
  • Bandara, T M W J, 1968, et al. (författare)
  • High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex(4)NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles
  • 2019
  • Ingår i: Renewable & Sustainable Energy Reviews. - : Elsevier BV. - 1364-0321 .- 1879-0690. ; 103, s. 282-290
  • Tidskriftsartikel (refereegranskat)abstract
    • High efficiency dye sensitized solar cells (DSSCs) have been achieved using a novel polymer gel electrolyte containing RbI and tetrahexylammonium iodide (Hex(4)NI) binary salts in combination with multi-layered TiO2 photoelectrodes. Performance enhancers were incorporated to the electrolyte to improve the efficiency in the DSSCs. Varying the salt mass fraction, showed that the conductivity in the electrolyte increases with increasing amount of RbI. The highest ionic conductivity of 4.19 mS cm(-1) is exhibited by the electrolyte sample with RbI: Hex(4)NI weight ratio of 3:1 at 25 degrees C. The temperature dependence of the electrolytes shows Arrhenius behavior. It is found that the electrolyte with RbI: Hex(4)NI weight ratio of 1.06:1 is more suitable for DSSC's applications and it has a conductivity of 3.77 mS cm(-1). A colloidal suspension of P25 TiO2 nanoparticles was used to make the spin coated photo-anodes in the form of stacks of 1-6 layers. The formation of a highly uniform and porous structure is observed with increasing number of layers from scanning electron microscopy and X-ray diffraction studies revealed that the layers are predominantly anatase phase with crystallite size of 19-22 nm. The band gap was estimated to be around 3.22 eV based on UV-Visible spectroscopy and found to be decreasing slightly with increasing layer thickness. The maximum efficiency of 7.5% and an impressively high current density of 20 mA cm(-2) were observed for the 4-layer device with the new gel electrolyte based on RbI and Hex(4)NI. This study not only brings reliability and consistency to the ways of preparing well-ordered TiO2 photoanodes but also offers the possibility of low-cost practical and highly efficient quasi-solid state DSSCs.
  •  
6.
  • Bandara, T M W J, 1968, et al. (författare)
  • N719 and N3 dyes for quasi-solid state dye sensitized solar cells - A comparative study using polyacrylonitrile and CsI based electrolytes
  • 2016
  • Ingår i: Ceylon Journal of Science. - : Sri Lanka Journals Online (JOL). - 2513-230X .- 2513-2814. ; 45:2, s. 61-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Dye sensitized solar cells offer a low cost alternative technology for solar energy harvesting. However, there are long term stability issues connected with these cells due to the liquid electrolytes normally used. Gel or solid polymer electrolytes which do not contain volatile solvents have been used in this investigation in order to alleviate these problems. Two types of solar cells were assembled using a double layered TiO2 film sensitized with two types of dye sensitizers, namely N719 (Ruthenizer 535-bisTBA) and N3 (Ruthenizer 535) in order to compare their performance. Quasi-solid-state electrolytes based on PAN (polyacrylonitrile) as the host polymer and CsI as the iodide salt were prepared by incorporating ethylene carbonate (EC) and propylene carbonate (PC) as plasticizers. The conductivity of the electrolyte was further improved by adding tetrapropylammonium iodide (Pr4NI), 1-methyl 3-propyl imidazolium iodide (MPII) and 4-tert-butylpyridine (4TBP). The incorporation of these additives resulted in 17% enhancement in ionic conductivity. This improved electrolyte was used to fabricate the solar cells with N3 and N719 dyes. The efficiency of the N3 dye based solar cell was 3.85% whereas the efficiency of the N719 dye based solar cell was 4.14% representing a significant efficiency enhancement by 7.53% by the N719 dye. In addition, due to additives the solar cell efficiency has enhanced by 19% compared to the solar cell without any additive.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy