SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raugei M.) "

Sökning: WFRF:(Raugei M.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cherubini, F., et al. (författare)
  • Bridging the gap between impact assessment methods and climate science
  • 2016
  • Ingår i: Environmental Science and Policy. - : Elsevier BV. - 1873-6416 .- 1462-9011. ; 64, s. 129-140
  • Forskningsöversikt (refereegranskat)abstract
    • Life-cycle assessment and carbon footprint studies are widely used by decision makers to identify climate change mitigation options and priorities at corporate and public levels. These applications, including the vast majority of emission accounting schemes and policy frameworks, traditionally quantify climate impacts of human activities by aggregating greenhouse gas emissions into the so-called CO2-equivalents using the 100-year Global Warming Potential (GWP100) as the default emission metric. The practice was established in the early nineties and has not been coupled with progresses in climate science, other than simply updating numerical values for GWP100. We review the key insights from the literature surrounding climate science that are at odds with existing climate impact methods and we identify possible improvement options. Issues with the existing approach lie in the use of a single metric that cannot represent the climate system complexity for all possible research and policy contexts, and in the default exclusion of near-term climate forcers such as aerosols or ozone precursors and changes in the Earth's energy balance associated with land cover changes. Failure to acknowledge the complexity of climate change drivers and the spatial and temporal heterogeneities of their climate system responses can lead to the deployment of suboptimal, and potentially even counterproductive, mitigation strategies. We argue for an active consideration of these aspects to bridge the gap between climate impact methods used in environmental impact analysis and climate science.
  •  
2.
  • Levasseur, A., et al. (författare)
  • Enhancing life cycle impact assessment from climate science: Review of recent findings and recommendations for application to LCA
  • 2016
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X. ; 71, s. 163-174
  • Forskningsöversikt (refereegranskat)abstract
    • Since the Global Warming Potential (GWP) was first presented in the Intergovernmental Panel on Climate Change (IPCC) First Assessment Report, the metric has been scrutinized and alternative metrics have been suggested. The IPCC Fifth Assessment Report gives a scientific assessment of the main recent findings from climate metrics research and provides the most up-to-date values for a subset of metrics and time horizons. The objectives of this paper are to perform a systematic review of available midpoint metrics (i.e. using an indicator situated in the middle of the cause-effect chain from emissions to climate change) for well-mixed greenhouse gases and near-term climate forcers based on the current literature, to provide recommendations for the development and use of characterization factors for climate change in life cycle assessment (LCA), and to identify research needs. This work is part of the ‘Global Guidance on Environmental Life Cycle Impact Assessment’ project held by the UNEP/SETAC Life Cycle Initiative and is intended to support a consensus finding workshop. In an LCA context, it can make sense to use several complementary metrics that serve different purposes, and from there get an understanding about the robustness of the LCA study to different perspectives and metrics. We propose a step-by-step approach to test the sensitivity of LCA results to different modelling choices and provide recommendations for specific issues such as the consideration of climate-carbon feedbacks and the inclusion of pollutants with cooling effects (negative metric values).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy