SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ravinet Mark) "

Sökning: WFRF:(Ravinet Mark)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cerca, José, et al. (författare)
  • Incomplete lineage sorting and ancient admixture, and speciation without morphological change in ghost-worm cryptic species
  • 2021
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 9, s. e10896-e10896
  • Tidskriftsartikel (refereegranskat)abstract
    • Morphologically similar species, that is cryptic species, may be similar or quasi-similar owing to the deceleration of morphological evolution and stasis. While the factors underlying the deceleration of morphological evolution or stasis in cryptic species remain unknown, decades of research in the field of paleontology on punctuated equilibrium have originated clear hypotheses. Species are expected to remain morphologically identical in scenarios of shared genetic variation, such as hybridization and incomplete lineage sorting, or in scenarios where bottlenecks reduce genetic variation and constrain the evolution of morphology. Here, focusing on three morphologically similar Stygocapitella species, we employ a whole-genome amplification method (WGA) coupled with double-digestion restriction-site associated DNA sequencing (ddRAD) to reconstruct the evolutionary history of the species complex. We explore population structure, use population-level statistics to determine the degree of connectivity between populations and species, and determine the most likely demographic scenarios which generally reject for recent hybridization. We find that the combination of WGA and ddRAD allowed us to obtain genomic-level data from microscopic eukaryotes (∼1 millimetre) opening up opportunities for those working with population genomics and phylogenomics in such taxa. The three species share genetic variance, likely from incomplete lineage sorting and ancient admixture. We speculate that the degree of shared variation might underlie morphological similarity in the Atlantic species complex.
  •  
2.
  • Cuevas, Angelica, et al. (författare)
  • Predictors of genomic differentiation within a hybrid taxon
  • 2022
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 18:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybridization is increasingly recognized as an important evolutionary force. Novel genetic methods now enable us to address how the genomes of parental species are combined in hybrid lineages. However, we still do not know the relative importance of admixed proportions, genome architecture and local selection in shaping hybrid genomes. Here, we take advantage of the genetically divergent island populations of Italian sparrow on Crete, Corsica and Sicily to investigate the predictors of genomic variation within a hybrid taxon. We test if differentiation is affected by recombination rate, selection, or variation in ancestry proportions. We find that the relationship between recombination rate and differentiation is less pronounced within hybrid lineages than between the parent species, as expected if purging of minor parent ancestry in low recombination regions reduces the variation available for differentiation. In addition, we find that differentiation between islands is correlated with differences in signatures of selection in two out of three comparisons. Signatures of selection within islands are correlated across all islands, suggesting that shared selection may mould genomic differentiation. The best predictor of strong differentiation within islands is the degree of differentiation from house sparrow, and hence loci with Spanish sparrow ancestry may vary more freely. Jointly, this suggests that constraints and selection interact in shaping the genomic landscape of differentiation in this hybrid species.
  •  
3.
  • Papoli Yazdi, Homa, et al. (författare)
  • Extensive transgressive gene expression in testis but not ovary in the homoploid hybrid Italian sparrow
  • 2022
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 31:15, s. 4067-4077
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybridization can result in novel allelic combinations which can impact the hybrid phenotype through changes in gene expression. While misexpression in F1 hybrids is well documented, how gene expression evolves in stabilized hybrid taxa remains an open question. As gene expression evolves in a stabilizing manner, break-up of co-evolved cis- and trans-regulatory elements could lead to transgressive patterns of gene expression in hybrids. Here, we address to what extent gonad gene expression has evolved in an established and stable homoploid hybrid, the Italian sparrow (Passer italiae). Through comparison of gene expression in gonads from individuals of the two parental species (i.e., house and Spanish sparrow) to that of Italian sparrows, we find evidence for strongly transgressive expression in male Italian sparrows—2530 genes (22% of testis genes tested for inheritance) exhibit expression patterns outside the range of both parent species. In contrast, Italian sparrow ovary expression was similar to that of one of the parent species, the house sparrow (Passer domesticus). Moreover, the Italian sparrow testis transcriptome is 26 times as diverged from those of the parent species as the parental transcriptomes are from each other, despite being genetically intermediate. This highlights the potential for regulation of gene expression to produce novel variation following hybridization. Genes involved in mitochondrial respiratory chain complexes and protein synthesis are enriched in the subset that is over-dominantly expressed in Italian sparrow testis, suggesting that selection on key functions has moulded the hybrid Italian sparrow transcriptome.
  •  
4.
  • Ravinet, Mark, 1986, et al. (författare)
  • Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale
  • 2016
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 25:1, s. 287-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Parallel speciation occurs when selection drives repeated, independent adaptive divergence that reduces gene flow between ecotypes. Classical examples show parallel speciation originating from shared genomic variation, but this does not seem to be the case in the rough periwinkle (Littorina saxatilis) that has evolved considerable phenotypic diversity across Europe, including several distinct ecotypes. Small ‘wave’ ecotype snails inhabit exposed rocks and experience strong wave action, while thick-shelled, ‘crab’ ecotype snails are larger and experience crab predation on less exposed shores. Crab and wave ecotypes appear to have arisen in parallel, and recent evidence suggests only marginal sharing of molecular variation linked to evolution of similar ecotypes in different parts of Europe. However, the extent of genomic sharing is expected to increase with gene flow and more recent common ancestry. To test this, we used de novo RAD-sequencing to quantify the extent of shared genomic divergence associated with phenotypic similarities amongst ecotype pairs on three close islands (<10 km distance) connected by weak gene flow (Nm ~ 0.03) and with recent common ancestry (<10 000 years). After accounting for technical issues, including a large proportion of null alleles due to a large effective population size, we found ~8–28% of positive outliers were shared between two islands and ~2–9% were shared amongst all three islands. This low level of sharing suggests that parallel phenotypic divergence in this system is not matched by shared genomic divergence despite a high probability of gene flow and standing genetic variation.
  •  
5.
  • Ravinet, Mark, 1986, et al. (författare)
  • Unique mitochondrial DNA lineages in Irish stickleback populations: cryptic refugium or rapid recolonization?
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:12, s. 2488-2504
  • Tidskriftsartikel (refereegranskat)abstract
    • Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.
  •  
6.
  • Sowersby, Will, et al. (författare)
  • Resource trait specialisation in an introduced fish population with reduced genetic diversity
  • 2020
  • Ingår i: Biological Invasions. - : Springer Science and Business Media LLC. - 1387-3547 .- 1573-1464. ; 22:8, s. 2447-2460
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological specialisation is hypothesised to play a major role in the evolution of phenotypic diversity, especially following the colonisation of novel habitats. For example, cichlid fishes provide some of the most remarkable evidence for rapid ecological diversification. Here, we capitalised on a recently (<= 40 years ago) introduced population of red devils (Amphilophus labiatus) in Australia to investigate adaptive phenotypic responses to a novel environment. We used stomach content analyses, morphometrics and laboratory experiments to test for covariation between diet and size of an important trophic trait, lip size. We found that, while maximum lip size in the study population was smaller than in the species' natural range, the proportions of algae, insects and fish remains in the diet covaried with lip size. However, contrary to predictions, we found no evidence for lip development to be plastic under laboratory conditions in relation to substrate complexity or food manipulation, nor did we find any relationship between lip morphology and feeding performance in adults. Single nucleotide polymorphism data, in turn, suggested that the introduced population has reduced standing genetic variation, which potentially influences both phenotypic plasticity and diversity, in comparison to native populations. Together, the results suggest that morphological variation in a key trophic trait can respond rapidly to diet in a novel environment, despite reduced genetic diversity in the population.
  •  
7.
  • Ålund, Murielle, et al. (författare)
  • Anthropogenic Change and the Process of Speciation
  • 2023
  • Ingår i: Cold Spring Harbor Perspectives in Biology. - : Cold Spring Harbor Laboratory Press (CSHL). - 1943-0264. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy