SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rawat Danda B.) "

Sökning: WFRF:(Rawat Danda B.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niu, Linwei, et al. (författare)
  • Energy-constrained scheduling for weakly hard real-time systems using standby-sparing
  • 2024
  • Ingår i: ACM Transactions on Design Automation of Electronic Systems. - : Association for Computing Machinery (ACM). - 1084-4309 .- 1557-7309. ; 29:2
  • Tidskriftsartikel (refereegranskat)abstract
    • For real-time embedded systems, QoS (Quality of Service), fault tolerance, and energy budget constraint are among the primary design concerns. In this research, we investigate the problem of energy constrained standby-sparing for both periodic and aperiodic tasks in a weakly hard real-time environment. The standby-sparing systems adopt a primary processor and a spare processor to provide fault tolerance for both permanent and transient faults. For such kind of systems, we firstly propose several novel standby-sparing schemes for the periodic tasks which can ensure the system feasibility under tighter energy budget constraint than the traditional ones. Then based on them integrated approachs for both periodic and aperiodic tasks are proposed to minimize the aperiodic response time whilst achieving better energy and QoS performance under the given energy budget constraint. The evaluation results demonstrated that the proposed techniques significantly outperformed the existing state-of-the-art approaches in terms of feasibility and system performance while ensuring QoS and fault tolerance under the given energy budget constraint.
  •  
2.
  • Niu, Linwei, et al. (författare)
  • Energy management for fault-tolerant (m,k)-constrained real-time systems that use standby-sparing
  • 2024
  • Ingår i: ACM Transactions on Embedded Computing Systems. - : Association for Computing Machinery (ACM). - 1539-9087 .- 1558-3465. ; 23:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Fault tolerance, energy management, and quality of service (QoS) are essential aspects for the design of real-time embedded systems. In this work, we focus on exploring methods that can simultaneously address the above three critical issues under standby-sparing. The standby-sparing mechanism adopts a dual-processor architecture in which each processor plays the role of the backup for the other one dynamically. In this way, it can provide fault tolerance subject to both permanent and transient faults. Due to its duplicate executions of the real-time jobs/tasks, the energy consumption of a standby-sparing system could be quite high. With the purpose of reducing energy under standby-sparing, we proposed three novel scheduling schemes: The first one is for (1, 1)-constrained tasks, and the second one and the third one (which can be combined into an integrated approach to maximize the overall energy reduction) are for general (m, k)-constrained tasks that require that among any k consecutive jobs of a task no more than (k − m) out of them could miss their deadlines. Through extensive evaluations and performance analysis, our results demonstrate that compared with the existing research, the proposed techniques can reduce energy by up to 11% for (1, 1)-constrained tasks and 25% for general (m, k)-constrained tasks while assuring (m, k)-constraints and fault tolerance as well as providing better user perceived QoS levels under standby-sparing.
  •  
3.
  • Rauniyar, Ashish, et al. (författare)
  • Federated learning for medical applications : A taxonomy, current trends, challenges, and future research directions
  • 2022
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • With the advent of the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML)/Deep Learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. Consequently, the realm of data-driven medical applications has garnered significant attention spanning academia and industry, ushering in marked enhancements in healthcare delivery quality. Despite these strides, the adoption of AI-driven medical applications remains hindered by formidable challenges, including the arduous task of meeting security, privacy, and quality of service (QoS) standards. Recent developments in Federated Learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, this survey paper highlights the current and future of FL technology in medical applications where data sharing is a significant burden. We delve into the contemporary research trends and their outcomes, unraveling the intricacies of designing reliable and scalable FL models. Our survey outlines the foundational statistical predicaments of FL, confronts device-related obstacles, delves into security challenges, and navigates the intricate terrain of privacy concerns, all while spotlighting its transformative potential within the medical domain. A primary focus of our study rests on medical applications, where we underscore the weighty burden of global cancer and illuminate the potency of FL in engendering computer-aided diagnosis tools that address this challenge with heightened efficacy. Further augmenting our discourse, recent literature has unveiled the inherent robustness and generalization of FL models compared to traditional data-driven medical applications. We hope that this review endeavors to serve as a checkpoint that sets forth the existing state-of-the-art works in a thorough manner and offers open problems and future research directions for this field. 
  •  
4.
  • Rauniyar, Ashish, et al. (författare)
  • Federated Learning for Medical Applications : A Taxonomy, Current Trends, Challenges, and Future Research Directions
  • 2024
  • Ingår i: IEEE Internet of Things Journal. - : Institute of Electrical and Electronics Engineers (IEEE). - 2327-4662. ; 11:5, s. 7374-7398
  • Tidskriftsartikel (refereegranskat)abstract
    • With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy