SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raymand David 1981 ) "

Sökning: WFRF:(Raymand David 1981 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Raymand, David, 1981-, et al. (författare)
  • Hydroxylation Structure and Proton Transfer Reactivity at the Zinc Oxide-Water Interface
  • 2011
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society. - 1932-7447 .- 1932-7455. ; 115:17, s. 8573-8579
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydroxylation structural features of the first adsorption layer and its connection to proton transfer reactivity has been studied for the ZnO–liquid water interface at room temperature. Molecular Dynamics simulations employing the ReaxFF forcefield were performed for water on seven ZnO surfaces with varying step concentration. At higher water coverage a higher level of hydroxylation was found, in agreement with previous experimental results. We have also calculated the free energy barrier for transferring a proton to the surface, showing that stepped surfaces stabilizes the hydroxylated state and decreases the water dissociation barrier. On highly stepped surfaces the barrier is only 2 kJ/mol or smaller. Outside the first adsorption layer no dissociation events were observed during almost 100 ns of simulation time; this indicates that these reactions are much more likely if catalysed by the metal oxide surface. Also, when exposed to a vacuum, the less stepped surfaces stabilizes adsorption beyond monolayer coverage.
  •  
2.
  • Raymand, David, 1981-, et al. (författare)
  • Investigation of Vibrational Modes and Phonon Density of States in ZnO Quantum Dots
  • 2012
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 116:12, s. 6893-6901
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to understand the phonon behavior in small metal oxide nanostructures and their surfaces is of great importance for thermal and microelectronic applications in successively smaller devices. Here the development of phonons in successively larger ZnO wurtzite quantum dots (QDs) is investigated. Raman spectroscopic measurements for particles from 3 to 11 nm reveal that the E-2 Raman active optical phonon at 436 cm(-1) is the first mode to be developed with a systematic increase with particle size. We also find a broad phonon band at 260-340 attributed to surface vibrations. The E-1-LO mode at 585 cm(-1) is the next to be developed while still being strongly suppressed in the confined particles. Other modes found in bulk ZnO are not developed for particles below 11 nm. Results from density functional theory showed an excellent agreement with the experimental molecular vibrations in the zinc acetate precursor and phonon modes in bulk ZnO. To elucidate the vibration behavior and phonon development in the ZnO QDs under nonzero temperature conditions and incorporating surface reconstruction, we performed reactive force field calculations. We show that the experimentally developed phonon modes in the QDs are the ones expected from dynamic theory. In particular, we show that the surface phonon modes in the very outermost surface (5 angstrom) can explain the observed broad phonon band and give the precise relation between the intensity of the surface and bulk phonons as the particle size increases. Calculations with temperatures between 50K and 1000K also show distinction of temperature effects in the material and that the phonon peaks are not generally shifted when the system is heated and quantum confined but instead reveal a dependence on the symmetry of the phonon mode. 
  •  
3.
  • Raymand, David, 1981- (författare)
  • Surface and Interface Studies of ZnO using Reactive Dynamics Simulation
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • About 90% of all chemicals are produced with the help of catalysts, substances with the ability to accelerate reactions without being consumed. Metal oxides play a prominent role in catalysis, since they are able to act reversibly in many chemical processes. Zink oxide (ZnO) is used to catalyse a number of industrially important reactions. For many of these reactions water is present as a reactant, product, or byproduct. The surface structure has a significant impact on the catalytic activity. However, currently, no experimental method simultaneously offers the spatial and temporal resolution to directly follow a catalytic process. This thesis explores surface structure dependent dynamical behavior for ZnO surfaces, nanoparticles, and water interfaces, using the computational chemistry method Molecular Dynamics, which enables detailed studies of structural and dynamical processes. Quantum mechanical (QM) calculations have been performed to obtain the energetics of the materials as a function of structure. This data has been used to parametrize reactive force-fields (ReaxFF), since the catalytic processes require both far larger and longer simulations than the capabilities of QM calculations on current computers. The simulations show that when steps are present on the surface, during crystal growth of ZnO, the creation of energetically favorable structures is accelerated. At the ZnO - water interface, structures that favor hydrogen bonding is promoted. At low, monolayer, coverage water adsorbs both molecularly and dissociatively, whereas at high coverage dissociated adsorption is favored. During evaporation from the monolayers, the ratio of dissociated and molecular water is preserved. Surface steps stabilizes the dissociated state as well as increases the rate of dissociation. The dynamical properties of ZnO nanoparticles were explored using Raman measurements and simulation. In both simulation and experiment certain vibrations were suppressed in the nanoparticles, compared to bulk. The simulations show that a narrow surface region lack the bulk-specific vibrations.
  •  
4.
  • Raymand, David, 1981-, et al. (författare)
  • Water adsorption on stepped ZnO surfaces from MD simulation
  • 2010
  • Ingår i: Surface Science. - : Elsevier B.V.. - 0039-6028 .- 1879-2758. ; 604:9-10, s. 741-752
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents a ReaxFF reactive force-field for use in molecular dynamics simulations of the ZnO–water system. The force-field parameters were fitted to a data-set of energies, geometries and charges derived from quantum-mechanical B3LYP calculations. The presented ReaxFF model provides a good fit to the QM reference data for the ZnO–water system that was present in the data-set. The force-field has been used to study how water is adsorbed, molecularly or dissociatively, at monolayer coverage on flat and stepped ZnO surfaces, at three different temperatures (10 K, 300 K, and 600 K). The stepped surfaces were created by introducing steps along the (0 0 0 1)-direction on the -surface. Equilibrium between molecular and dissociated water was observed on the terraces, resulting in a half dissociated, half molecular water monolayer. The equilibrium between dissociated and molecular water on the surface was found to be reached quickly (<10 ps). When water molecules desorb and the coverage falls, the 1:1 water–hydroxyl ratio is maintained on terraces, while steps remain largely hydroxylated. The results show that structures that promote hydrogen bonding are favored and that the presence of steps promotes an increased level of hydroxylation in the water monolayers.
  •  
5.
  • van Duin, Adri, et al. (författare)
  • Development and validation of a ReaxFF reactive force field for Cu-cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases
  • 2010
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 114:35, s. 9507-9514
  • Tidskriftsartikel (refereegranskat)abstract
    • To enable large-scale reactive dynamic simulations of copper oxide/water and copper ion/water interactions we have extended the ReaxFF reactive force field framework to Cu/O/H interactions. To this end, we employed a multistage force field development strategy, where the initial training set (containing metal/metal oxide/metal hydroxide condensed phase data and [Cu(H2O)(n)](2+) cluster structures and energies) is augmented by single-point quantum mechanices (QM) energies from [Cu(H2O)](2+) clusters abstracted from a ReaxFF molecular dynamics simulation. This provides a convenient strategy to both enrich the training set and to validate the final force field. To further validate the force field description we performed molecular dynamics simulations on Cu2+/water systems. We found good agreement between our results and earlier experimental and QM-based molecular dynamics work for the average Cu/water coordination, Jahn-Teller distortion, and inversion in [Cu(H2O)(6)](2+) clusters and first- and second-shell O-Cu-O angular distributions, indicating that this force field gives a satisfactory description of the Cu-cation/water interactions. We believe that this force field provides a computationally convenient method for studying the solution and surface chemistry of metal cations and metal oxides and, as such, has applications for studying protein/metal cation complexes, pH-dependent crystal growth/dissolution, and surface catalysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy