SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reader Heather) "

Sökning: WFRF:(Reader Heather)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asmala, Eero, et al. (författare)
  • Role of Eelgrass in the Coastal Filter of Contrasting Baltic Sea Environments
  • 2019
  • Ingår i: Estuaries and Coasts. - : Springer Science and Business Media LLC. - 1559-2723 .- 1559-2731. ; 42:7, s. 1882-1895
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal ecosystems act as filters of nutrients from land to the open sea. We investigated the role of eelgrass (Zostera marina) metabolism in the coastal filter transforming nitrogen, phosphorus, and organic carbon. Field campaigns following identical methodologies were carried out at two contrasting coastal locations: the mesohaline and nutrient-rich Roskilde Fjord, Denmark, and the mesotrophic brackish Tvarminne archipelago, Finland. Over the 24-h in situ benthic incubations, we measured oxygen concentrations continuously and assessed changes in DOM characteristics and net fluxes of carbon, nitrogen, and phosphorus. Ecosystem metabolism modeled on the basis of the O-2 data showed that the systems were either net heterotrophic (Roskilde Fjord; - 1.6 and - 2.4 g O-2 m(-2) day(-1) in eelgrass meadow and bare sand, respectively) or had balanced primary production and respiration (Tvarminne; 0.0 and 0.2 g O-2 m(-2) day(-1)). Overall, initial nutrient stoichiometry was a key factor determining benthic-pelagic fluxes of nutrients, which exacerbated the deviations from Redfield ratios of N and P, indicating an efficient use of the limiting nutrient. A net diel uptake of dissolved inorganic N was observed at both locations (- 2.3 mu mol l(-1) day(-1) in Roskilde Fjord and - 0.1 mu mol l(-1) day(-1) in Tvarminne). Despite minor changes in dissolved organic carbon concentrations during the incubations, a marked increase of fluorescent DOM was observed at both locations, suggesting rapid heterotrophic processing of the DOM pool. Our results underline that the biogeochemical role of eelgrass in the coastal filter is not inherent, but strongly dependent on the environmental conditions.
  •  
2.
  • Ekström, Sara M., et al. (författare)
  • Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area
  • 2016
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 121:2, s. 479-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies report trends of strongly increasing iron (Fe) concentrations in freshwaters. Since Fe is a key element with a decisive role in the biogeochemical cycling of major elements, it is important to understand the mechanisms behind these trends. We hypothesized that variations in Fe concentration are driven mainly by redox dynamics in hydraulically connected soils. Notably, Fe(III), which is the favored oxidation state except in environments where microbial activity provide strong reducing intensity, has several orders of magnitude lower water solubility than Fe(II). To test our hypothesis, seasonal variation in water chemistry, discharge, and air temperature was studied in three Swedish rivers. Methylmercury and sulfate were used as indicators of seasonal redox changes. Seasonal variability in water chemistry, discharge, and air temperature in the Eman and Lyckeby Rivers implied that the variation in Fe was primarily driven by the prevalence of reducing conditions in the catchment. In general, high Fe concentrations were observed when methylmercury was high and sulfate was low, indicative of reducing conditions. The Fe concentrations showed no or weak relationships with variations in dissolved organic matter concentration and aromaticity. The seasonal variation in Fe concentration of the Ume river was primarily dependent on timing of the snowmelt in high- versus low-altitude areas of the catchment. There were long-term trends of increasing temperature in all catchments and also trends of increasing discharge in the southern rivers, which should increase the probability for anaerobic conditions in space and time and thereby increase Fe transport to the aquatic systems.
  •  
3.
  • Kritzberg, Emma, et al. (författare)
  • Importance of boreal rivers in providing iron to marine waters.
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters - the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.
  •  
4.
  • Reader, Heather E., et al. (författare)
  • Mass and UV-visible spectral fingerprints of dissolved organic matter : Sources and reactivity
  • 2015
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 2:OCT
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced analytical techniques have revealed a high degree of complexity in the chemical makeup of dissolved organic matter (DOM). This has opened the door for a deeper understanding of the role of DOM in the aquatic environment. However, the expense, analytical cost, and challenges related to interpretation of the large datasets generated by these methods limit their widespread application. Optical methods, such as absorption and fluorescence spectroscopy are relatively inexpensive and easy to implement, but lack the detailed information available in more advanced methods. We were able to directly link the analysis of absorption spectra to the mass spectra of DOM using an in-line detector system coupled to multivariate data analysis. Monthly samples were taken from three river mouths in Sweden for 1 year. One subset of samples was exposed to photochemical degradation and another subset was exposed to long-term (4 months) biological degradation. A principle component analysis was performed on the coupled absorption-mass spectra data. Loading spectra for each principle component show distinct fingerprints for both reactivity (i.e., photochemical, biological degradation) and source (i.e., catchment land cover, temperature, hydrology). The fingerprints reveal mass-to-charge values that contribute to optical signals and characteristics seen in past studies, and emphasize the difficulties in interpreting changes in bulk CDOM characteristics resulting from multiple catchment processes. The approach provides a potential simple method for using optical indicators as tracers for more complex chemical processes both with regards to source material for DOM and the past reactive processing of DOM.
  •  
5.
  • Reader, Heather, et al. (författare)
  • Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:12, s. 3409-3419
  • Tidskriftsartikel (refereegranskat)abstract
    • To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being on the same order of magnitude for all three catchments. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume river was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment than in the two southern catchments. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply to the Baltic Sea from boreal rivers will be more stable throughout the year, and potentially have a lower bioavailability.
  •  
6.
  • Reader, Heather, et al. (författare)
  • Variability of carbon monoxide and carbon dioxide apparent quantum yield spectra in three coastal estuaries of the South Atlantic Bight
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:11, s. 4279-4294
  • Tidskriftsartikel (refereegranskat)abstract
    • The photochemical oxidation of oceanic dissolved organic carbon (DOC) to carbon monoxide (CO) and carbon dioxide (CO2) has been estimated to be a significant process with global photoproduction transforming petagrams of DOC to inorganic carbon annually. To further quantify the importance of these two photoproducts in coastal DOC cycling, 38 paired apparent quantum yield (AQY) spectra for CO and CO2 were determined at three locations along the coast of Georgia, USA over the course of one year. The AQY spectra for CO2 were considerably more varied than CO. CO AQY spectra exhibited a seasonal shift in spectrally integrated (260 nm-490 nm) AQY from higher efficiencies in the autumn to less efficient photoproduction in the summer. While full-spectrum photoproduction rates for both products showed positive correlation with pre-irradiation UV-B sample absorption (i.e. chromophoric dissolved organic matter, CDOM) as expected, we found no correlation between AQY and CDOM for either product at any site. Molecular size, approximated with pre-irradiation spectral slope coefficients, and aromatic content, approximated by the specific ultraviolet absorption of the pre-irradiated samples, were also not correlated with AQY in either data set. The ratios of CO2 to CO photoproduction determined using both an AQY model and direct production comparisons were 23.2 +/- 12.5 and 22.5 +/- 9.0, respectively. Combined, both products represent a loss of 2.9 to 3.2% of the DOC delivered to the estuaries and inner shelf of the South Atlantic Bight yearly, and 6.4 to 7.3% of the total annual degassing of CO2 to the atmosphere. This result suggests that direct photochemical production of CO and CO2 is a small, yet significant contributor to both DOC cycling and CO2 gas exchange in this coastal system.
  •  
7.
  • Vaquer-Sunyer, Raquel, et al. (författare)
  • Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:16, s. 4751-4765
  • Tidskriftsartikel (refereegranskat)abstract
    • The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.
  •  
8.
  • Voss, Maren, et al. (författare)
  • Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries
  • 2021
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 154:2, s. 385-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy