SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reddy Hemanth K. N.) "

Sökning: WFRF:(Reddy Hemanth K. N.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munke, Anna, et al. (författare)
  • Data Descriptor : Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
  • 2016
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
  •  
2.
  • Sobolev, Egor, et al. (författare)
  • Megahertz single-particle imaging at the European XFEL
  • 2020
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
  •  
3.
  • Daurer, Benedikt J., et al. (författare)
  • Ptychographic wavefront characterization for single-particle imaging at x-ray lasers
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:4, s. 551-562
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-characterized wavefront is important for many x-ray free-electron laser (XFEL) experiments, especially for single-particle imaging (SPI), where individual biomolecules randomly sample a nanometer region of highly focused femtosecond pulses. We demonstrate high-resolution multiple-plane wavefront imaging of an ensemble of XFEL pulses, focused by Kirkpatrick–Baez mirrors, based on mixed-state ptychography, an approach letting us infer and reduce experimental sources of instability. From the recovered wavefront profiles, we show that while local photon fluence correction is crucial and possible for SPI, a small diversity of phase tilts likely has no impact. Our detailed characterization will aid interpretation of data from past and future SPI experiments and provides a basis for further improvements to experimental design and reconstruction algorithms.
  •  
4.
  • Lundholm, Ida V., et al. (författare)
  • Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
  • 2018
  • Ingår i: IUCrJ. - : International Union of Crystallography. - 2052-2525. ; 5, s. 531-541
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.
  •  
5.
  • Reddy, Hemanth K. N., et al. (författare)
  • Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
  • 2017
  • Ingår i: Scientia Danica. Series H. Humanistica 4. - : Nature Publishing Group. - 1904-5506 .- 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported similar to 600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
  •  
6.
  • Bielecki, Johan, 1982, et al. (författare)
  • Electrospray sample injection for single-particle imaging with x-ray lasers
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
  •  
7.
  • Hantke, Max Felix, et al. (författare)
  • Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams
  • 2018
  • Ingår i: IUCrJ. - 2052-2525. ; 5, s. 673-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.
  •  
8.
  • Kurta, Ruslan P., et al. (författare)
  • Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
  • 2017
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 119:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.
  •  
9.
  • Okamoto, Kenta, et al. (författare)
  • Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly
  • 2018
  • Ingår i: Virology. - : Elsevier BV. - 0042-6822 .- 1096-0341. ; 516, s. 239-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.
  •  
10.
  • Kördel, Mikael, et al. (författare)
  • Biological Laboratory X-Ray Microscopy
  • 2019
  • Ingår i: X-Ray Nanoimaging. - : SPIE - International Society for Optical Engineering. - 9781510629189
  • Konferensbidrag (refereegranskat)abstract
    • Zone-plate-based soft x-ray microscopes operating in the water window allow high-resolution and high-contrast imaging of intact cells in their near-native state. Laboratory-source-based x-ray microscopes are an important complement to the accelerator-based instruments, providing high accessibility and allowing close integration with other cell-biological techniques. Here we present recent biological applications using the Stockholm laboratory water-window x-ray microscope, which is based on a liquid-nitrogen-jet laser-plasma source. Technical improvements to the microscope in the last few years have resulted in increased x-ray flux at the sample and significantly improved stability and reliability. In addition to this, vibrations in key components have been measured, analyzed and reduced to improve the resolution to 25 nm half-period. The biological applications include monitoring the development of carbon-dense vesicles in starving human embryonic kidney cells (HEK293T), imaging the interaction between natural killer (NK) cells and HEK293T target cells, and most recently studying a newly discovered giant DNA virus and the process of viral replication inside a host amoeba. All biological imaging was done on cryo-frozen hydrated samples in 2D and in some cases 3D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Reddy, Hemanth K. N. (16)
Svenda, Martin (15)
Sellberg, Jonas A. (10)
Maia, Filipe R. N. C ... (9)
Hajdu, Janos (7)
Bielecki, Johan (6)
visa fler...
Daurer, Benedikt J. (6)
Larsson, Daniel S. D ... (6)
Nettelblad, Carl (5)
Hantke, Max F. (5)
Aquila, Andrew (4)
Williams, Garth J. (4)
Timneanu, Nicusor (4)
Barty, Anton (4)
Kirian, Richard A. (4)
Hertz, Hans (4)
Vartanyants, Ivan A. (4)
Loh, N. Duane (4)
Mancuso, Adrian P. (3)
Hart, Philip (3)
Chapman, Henry N. (3)
Andreasson, Jakob, 1 ... (3)
Fromme, Petra (3)
Rose, Max (3)
DeMirci, Hasan (3)
Schwander, Peter (3)
Xavier, P. Lourdu (3)
Yoon, Chun Hong (3)
Hogue, Brenda G. (3)
Kim, Yoonhee (3)
Ayyer, Kartik (3)
Toprak, Muhammet, 19 ... (2)
Sierra, Raymond G. (2)
Seibert, M Marvin (2)
Ulmer, Anatoli (2)
Andreasson, Jakob (2)
Ekeberg, Tomas (2)
Seibert, Marvin (2)
Hajdu, J (2)
Bostedt, Christoph (2)
Spence, John C. H. (2)
Önfelt, Björn (2)
Arsana, Komang G.Y. (2)
Bobkov, Sergey (2)
Kurta, Ruslan P. (2)
Awel, Salah (2)
Ekeberg, Tomas, 1983 ... (2)
Bielecki, Johan, 198 ... (2)
Osipov, Timur (2)
Hasse, Dirk (2)
visa färre...
Lärosäte
Uppsala universitet (14)
Kungliga Tekniska Högskolan (12)
Chalmers tekniska högskola (3)
Stockholms universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy