SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Redestig Henning) "

Search: WFRF:(Redestig Henning)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baxter, Charles J, et al. (author)
  • The metabolic response of heterotrophic Arabidopsis cells to oxidative stress
  • 2007
  • In: Plant Physiology. - Rockville, USA : American Society of Plant Biologists. - 0032-0889 .- 1532-2548. ; 143:1, s. 312-25
  • Journal article (peer-reviewed)abstract
    • To cope with oxidative stress, the metabolic network of plant cells must be reconfigured either to bypass damaged enzymes or to support adaptive responses. To characterize the dynamics of metabolic change during oxidative stress, heterotrophic Arabidopsis (Arabidopsis thaliana) cells were treated with menadione and changes in metabolite abundance and (13)C-labeling kinetics were quantified in a time series of samples taken over a 6 h period. Oxidative stress had a profound effect on the central metabolic pathways with extensive metabolic inhibition radiating from the tricarboxylic acid cycle and including large sectors of amino acid metabolism. Sequential accumulation of metabolites in specific pathways indicated a subsequent backing up of glycolysis and a diversion of carbon into the oxidative pentose phosphate pathway. Microarray analysis revealed a coordinated transcriptomic response that represents an emergency coping strategy allowing the cell to survive the metabolic hiatus. Rather than attempt to replace inhibited enzymes, transcripts encoding these enzymes are in fact down-regulated while an antioxidant defense response is mounted. In addition, a major switch from anabolic to catabolic metabolism is signaled. Metabolism is also reconfigured to bypass damaged steps (e.g. induction of an external NADH dehydrogenase of the mitochondrial respiratory chain). The overall metabolic response of Arabidopsis cells to oxidative stress is remarkably similar to the superoxide and hydrogen peroxide stimulons of bacteria and yeast (Saccharomyces cerevisiae), suggesting that the stress regulatory and signaling pathways of plants and microbes may share common elements.
  •  
2.
  • Redestig, Henning, et al. (author)
  • Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data
  • 2009
  • In: Analytical Chemistry. - Washington : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 81:19, s. 7974-7980
  • Journal article (peer-reviewed)abstract
    • Most mass spectrometry based metabolomics studies are semiquantitative and depend on efficient normalization techniques to suppress systematic error. A common approach is to include isotope-labeled internal standards (ISs) and then express the estimated metabolite abundances relative to the IS. Because of problems such as insufficient chromatographic resolution, however, the analytes may directly influence estimates of the IS, a phenomenon known as cross-contribution (CC). Normalization using ISs that suffer from CC effects will cause significant loss of information if the interfering analytes are associated with the studied factors. We present a novel normalization algorithm, which compensates for systematic CC effects that can be traced back to a linear association with the experimental design. The proposed method was found to be superior at purifying the signal of interest compared to current normalization methods when applied to two biological data sets and a multicomponent dilution mixture. Our method is applicable to data from randomized and designed experiments that use ISs to monitor the systematic error.
  •  
3.
  • Redestig, Henning, et al. (author)
  • Integrating functional knowledge during sample clustering for microarray data using unsupervised decision trees
  • 2007
  • In: Biometrical Journal. - Berlin, Germany : Akademie Verlag. - 0323-3847 .- 1521-4036. ; 49:2, s. 214-29
  • Journal article (peer-reviewed)abstract
    • Clustering of microarray gene expression data is performed routinely, for genes as well as for samples. Clustering of genes can exhibit functional relationships between genes; clustering of samples on the other hand is important for finding e.g. disease subtypes, relevant patient groups for stratification or related treatments. Usually this is done by first filtering the genes for high-variance under the assumption that they carry most of the information needed for separating different sample groups. If this assumption is violated, important groupings in the data might be lost. Furthermore, classical clustering methods do not facilitate the biological interpretation of the results. Therefore, we propose to methodologically integrate the clustering algorithm with prior biological information. This is different from other approaches as knowledge about classes of genes can be directly used to ease the interpretation of the results and possibly boost clustering performance. Our approach computes dendrograms that resemble decision trees with gene classes used to split the data at each node which can help to find biologically meaningful differences between the sample groups. We have tested the proposed method both on simulated and real data and conclude its usefulness as a complementary method, especially when assumptions of few differentially expressed genes along with an informative mapping of genes to different classes are met.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view