SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reggiani H.) "

Sökning: WFRF:(Reggiani H.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Nijkamp, P., et al. (författare)
  • Towards a regional science academy : A manifesto
  • 2016
  • Ingår i: Region. - : European Regional Science Association. - 2409-5370. ; 3:1, s. R1-R16
  • Tidskriftsartikel (refereegranskat)abstract
    • This Manifesto provides a joint proposal to create a Regional Science Academy as a think-tank support platform for a strategic development of the spatial sciences. The Regional Science Academy is a strategic spatial knowledge catalyst: it acts as a global intellectual powerhouse for new knowledge network initiatives and scholarly views on regions and cities as vital centrepieces of interconnected spatial systems. This contribution highlights its role and presents various activity plans. 
  •  
4.
  • Vigan, A., et al. (författare)
  • The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the formation and evolution of giant planets (>= 1 M-Jup) at wide orbital separation (>= 5 AU) is one of the goals of direct imaging. Over the past 15 yr, many surveys have placed strong constraints on the occurrence rate of wide-orbit giants, mostly based on non-detections, but very few have tried to make a direct link with planet formation theories. In the present work, we combine the results of our previously published VLT/NaCo large program with the results of 12 past imaging surveys to constitute a statistical sample of 199 FGK stars within 100 pc, including three stars with sub-stellar companions. Using Monte Carlo simulations and assuming linear flat distributions for the mass and semi-major axis of planets, we estimate the sub-stellar companion frequency to be within 0.75-5.70% at the 68% confidence level (CL) within 20-300 AU and 0.5-75 M-Jup, which is compatible with previously published results. We also compare our results with the predictions of state-of-the-art population synthesis models based on the gravitational instability (GI) formation scenario with and without scattering. We estimate that in both the scattered and non-scattered populations, we would be able to detect more than 30% of companions in the 1-75 M-Jup range (95% CL). With the three sub-stellar detections in our sample, we estimate the fraction of stars that host a planetary system formed by GI to be within 1.0-8.6% (95% CL). We also conclude that even though GI is not common, it predicts a mass distribution of wide-orbit massive companions that is much closer to what is observed than what the core accretion scenario predicts. Finally, we associate the present paper with the release of the Direct Imaging Virtual Archive (DIVA), a public database that aims at gathering the results of past, present, and future direct imaging surveys.
  •  
5.
  • Amarsi, Anish, et al. (författare)
  • The GALAH Survey : non-LTE departure coefficients for large spectroscopic surveys
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 13 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 3756 1D MARCS model atmospheres that spans 3000 <= T-eff/K <= 8000, - 0.5 <= log g/cm s(-2) <= 5.5, and - 5 <= [Fe/H] <= 1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 50 126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between - 0.7 dex and + 0.2 dex for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe] versus [Fe/H] plane by up to 0.1 dex, and it can remove spurious differences between the dwarfs and giants by up to 0.2 dex. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy. The grids of departure coefficients are publicly available and can be implemented into LTE pipelines to make the most of observational data sets from large spectroscopic surveys.
  •  
6.
  • Proletov, Ian, et al. (författare)
  • Primary and secondary glomerulonephritides 1.
  • 2014
  • Ingår i: Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. - : Oxford University Press (OUP). - 1460-2385. ; 29 Suppl 3:May, s. 186-200
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Serabyn, E, et al. (författare)
  • The W. M. Keck Observatory infrared vortex coronagraph and a first image of HIP79124 B
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:1, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L′-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP 79124, which had previously been detected by means of interferometry. With HIP 79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L′ band versus H band, this new coronagraphic capability will enable high-contrast, small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.
  •  
8.
  • Zhang, Yapeng, et al. (författare)
  • The 13CO-rich atmosphere of a young accreting super-Jupiter
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 595:7867, s. 370-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Isotope abundance ratios have an important role in astronomy and planetary sciences, providing insights into the origin and evolution of the Solar System, interstellar chemistry and stellar nucleosynthesis1,2. In contrast to deuterium/hydrogen ratios, carbon isotope ratios are found to be roughly constant (around 89) in the Solar System1,3, but do vary on galactic scales with a 12C/13C isotopologue ratio of around 68 in the current local interstellar medium4–6. In molecular clouds and protoplanetary disks, 12CO/13CO ratios can be altered by ice and gas partitioning7, low-temperature isotopic ion-exchange reactions8 and isotope-selective photodissociation9. Here we report observations of 13CO in the atmosphere of the young, accreting super-Jupiter TYC 8998-760-1 b, at a statistical significance of more than six sigma. Marginalizing over the planet’s atmospheric temperature structure, chemical composition and spectral calibration uncertainties suggests a 12CO/13CO ratio of 31−10+17(90% confidence), a substantial enrichment in 13C with respect to the terrestrial standard and the local interstellar value. As the current location of TYC 8998-760-1 b at greater than or equal to 160 astronomical units is far beyond the CO snowline, we postulate that it accreted a substantial fraction of its carbon from ices enriched in 13C through fractionation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy