SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reig M) "

Sökning: WFRF:(Reig M)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  • Feroci, M., et al. (författare)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Tidskriftsartikel (refereegranskat)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
4.
  •  
5.
  •  
6.
  • Khorchani, M., et al. (författare)
  • Average annual and seasonal Land Surface Temperature, Spanish Peninsular
  • 2018
  • Ingår i: Journal of Maps. - : Informa UK Limited. - 1744-5647. ; 14:2, s. 465-475
  • Tidskriftsartikel (refereegranskat)abstract
    • The first long-term Land Surface Temperature (LST) maps for the Peninsular Spain at annual and seasonal time scales for 1981-2015 is presented in this work. A robust protocol for correcting and calibrating NOAA-AVHRR images and computing LST datasets at the spatial resolution of 1.1km has been used. Simultaneously, maximum air temperature (Tmax) maps at the same spatial resolution have been produced using data from meteorological stations. The comparison between the two datasets resulted in statistically significant spatial correlations at annual and seasonal scales. Finally, the Normalized Difference Vegetation Index (NDVI) data were also compared with the obtained LST datasets and the results showed significant negative correlations between the two variables, especially in summer.
  •  
7.
  •  
8.
  •  
9.
  • Vicente-Serrano, S. M., et al. (författare)
  • Vegetation greening in Spain detected from long term data (1981-2015)
  • 2020
  • Ingår i: International Journal of Remote Sensing. - : Informa UK Limited. - 0143-1161 .- 1366-5901. ; 41:5, s. 1709-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes a newly developed high-resolution (1.1 km) Normalized Difference Vegetation Index dataset for the peninsular Spain and the Balearic Islands (Sp_1km_NDVI). This dataset is developed based on National Oceanic and Atmospheric Administration–Advanced Very High Resolution Radiometer (NOAA–AVHRR) afternoon images, spanning the past three decades (1981–2015). After a careful pre-processing procedure, including calibration with post-launch calibration coefficients, geometric and topographic corrections, cloud removal, temporal filtering, and bi-weekly composites by maximum NDVI-value, we assessed changes in vegetation greening over the study domain using Mann-Kendall and Theil-Sen statistics. Our trend results were compared with those derived from some widely recognized global NDVI datasets [e.g. the Global Inventory Modelling and Mapping Studies 3rd generation (GIMMS3g), Smoothed NDVI (SMN) and Moderate-Resolution Imaging Spectroradiometer (MODIS)]. Results demonstrate that there is a good agreement between the annual trends based on Sp_1km_NDVI product and other datasets. Nonetheless, we found some differences in the spatial patterns of the NDVI trends at the seasonal scale. Overall, in comparison to the available global NDVI datasets, Sp_1km_NDVI allows for characterizing changes in vegetation greening at a more-detailed spatial and temporal scale. In specific, our dataset provides relatively long-term corrected satellite time series (>30 years), which are crucial to understand the response of vegetation to climate change and human-induced activities. Also, given the complex spatial structure of NDVI changes over the study domain, particularly due to the rapid land intensification processes, the spatial resolution (1.1 km) of our dataset can provide detailed spatial information on the inter-annual variability of vegetation greening in this Mediterranean region and assess its links to climate change and variability.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy