SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reilly Brendan) "

Sökning: WFRF:(Reilly Brendan)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asselbergs, Folkert W., et al. (författare)
  • Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 91:5, s. 823-838
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering similar to 2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.
  •  
2.
  • Detlef, Henrieka, et al. (författare)
  • Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation
  • 2021
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 15:9, s. 4357-4380
  • Tidskriftsartikel (refereegranskat)abstract
    • The Petermann 2015 expedition to Petermann Fjord and adjacent Hall Basin recovered a transect of cores, extending from Nares Strait to underneath the 48 km long ice tongue of Petermann glacier, offering a unique opportunity to study ice-ocean-sea ice interactions at the interface of these realms. First results suggest that no ice tongue existed in Petermann Fjord for large parts of the Holocene, raising the question of the role of the ocean and the marine cryosphere in the collapse and re-establishment of the ice tongue. Here we use a multi-proxy approach (sea-ice-related biomarkers, total organic carbon and its carbon isotopic composition, and benthic and planktonic foraminiferal abundances) to explore Holocene sea ice dynamics at OD1507-03TC-41GC-03PC in outer Petermann Fjord. Our results are in line with a tight coupling of the marine and terrestrial cryosphere in this region and, in connection with other regional sea ice reconstructions, give insights into the Holocene evolution of ice arches and associated landfast ice in Nares Strait. The late stages of the regional Holocene Thermal Maximum (6900-5500 cal yr BP) were marked by reduced seasonal sea ice concentrations in Nares Strait and the lack of ice arch formation. This was followed by a transitional period towards Neoglacial cooling from 5500-3500 cal yr BP, where a southern ice arch might have formed, but an early seasonal breakup and late formation likely caused a prolonged open water season and enhanced pelagic productivity in Nares Strait. Between 3500 and 1400 cal yr BP, regional records suggest the formation of a stable northern ice arch only, with a short period from 2500-2100 cal yr BP where a southern ice arch might have formed intermittently in response to atmospheric cooling spikes. A stable southern ice arch, or even double arching, is also inferred for the period after 1400 cal yr BP. Thus, both the inception of a small Petermann ice tongue at similar to 2200 cal yr BP and its rapid expansion at similar to 600 cal yr BP are preceded by a transition towards a southern ice arch regime with landfast ice formation in Nares Strait, suggesting a stabilizing effect of landfast sea ice on Petermann Glacier.
  •  
3.
  • Ganesh, Santhi K., et al. (författare)
  • Loci influencing blood pressure identified using a cardiovascular gene-centric array
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:8, s. 1663-1678
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.
  •  
4.
  • Glueder, Anna, et al. (författare)
  • Calibrated relative sea levels constrain isostatic adjustment and ice history in northwest Greenland
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 293
  • Tidskriftsartikel (refereegranskat)abstract
    • Relative Sea Levels (RSLs) derived primarily from marine bivalves near Petermann Glacier, NW Greenland, constrain past regional ice-mass changes through glacial isostatic adjustment (GIA) modeling. Oxygen isotopes measured on bivalves corrected for shell-depth habitat and document changing meltwater input. Rapid RSL fall of up to 62 m/kyr indicates ice loss at or prior to ∼9 ka. Transition to an RSL stillstand starting at ∼6 ka reflects renewed ice-mass loading followed by further mass loss over the past few millennia. GIA simulations of rapid early RSL fall suggest a low regional upper-mantle viscosity. Early loss of grounded ice tracks atmospheric warming and pre-dates the eventual collapse of Petermann Glacier's floating ice tongue near ∼7 ka, suggesting grounding zone stabilization during early phases of deglaciation. We hypothesize mid-Holocene regrowth of regional ice caps in response to cooling and increased precipitation, following loss of the floating shelf ice. Remnants of these ice caps remain present but are now melting.
  •  
5.
  • Hogan, Kelly A., et al. (författare)
  • Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland
  • 2020
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 14:1, s. 261-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Petermann Fjord is a deep ( > 1000 m) fjord that incises the coastline of north-west Greenland and was carved by an expanded Petermann Glacier, one of the six largest outlet glaciers draining the modern Greenland Ice Sheet (GrIS). Between 5 and 70 m of unconsolidated glacigenic material infills in the fjord and adjacent Nares Strait, deposited as the Petermann and Nares Strait ice streams retreated through the area after the Last Glacial Maximum. We have investigated the deglacial deposits using seismic stratigraphic techniques and have correlated our results with high-resolution bathymetric data and core lithofacies. We identify six seismoacoustic facies in more than 3500 line kilometres of subbottom and seismic-reflection profiles throughout the fjord, Hall Basin and Kennedy Channel. Seismo-acoustic facies relate to bedrock or till surfaces (Facies I), subglacial deposition (Facies II), deposition from meltwater plumes and icebergs in quiescent glacimarine conditions (Facies III, IV), deposition at grounded ice margins during stillstands in retreat (grounding-zone wedges; Facies V) and the redeposition of material downslope (Facies IV). These sediment units represent the total volume of glacial sediment delivered to the mapped marine environment during retreat. We calculate a glacial sediment flux for the former Petermann ice stream as 1080-1420 m(3) a(-1) per metre of ice stream width and an average deglacial erosion rate for the basin of 0.29-0.34 mm a(-1). Our deglacial erosion rates are consistent with results from Antarctic Peninsula fjord systems but are several times lower than values for other modern GrIS catchments. This difference is attributed to fact that large volumes of surface water do not access the bed in the Petermann system, and we conclude that glacial erosion is limited to areas overridden by streaming ice in this large outlet glacier setting. Erosion rates are also presented for two phases of ice retreat and confirm that there is significant variation in rates over a glacial-deglacial transition. Our new glacial sediment fluxes and erosion rates show that the Petermann ice stream was approximately as efficient as the palaeo-Jakobshavn Isbra at eroding, transporting and delivering sediment to its margin during early deglaciation.
  •  
6.
  • Jakobsson, Martin, et al. (författare)
  • Ryder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill
  • 2020
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • The processes controlling advance and retreat of outlet glaciers in fjords draining the Greenland Ice Sheet remain poorly known, undermining assessments of their dynamics and associated sea-level rise in a warming climate. Mass loss of the Greenland Ice Sheet has increased six-fold over the last four decades, with discharge and melt from outlet glaciers comprising key components of this loss. Here we acquired oceanographic data and multibeam bathymetry in the previously uncharted Sherard Osborn Fjord in northwest Greenland where Ryder Glacier drains into the Arctic Ocean. Our data show that warmer subsurface water of Atlantic origin enters the fjord, but Ryder Glacier’s floating tongue at its present location is partly protected from the inflow by a bathymetric sill located in the innermost fjord. This reduces under-ice melting of the glacier, providing insight into Ryder Glacier’s dynamics and its vulnerability to inflow of Atlantic warmer water.
  •  
7.
  • Jakobsson, Martin, et al. (författare)
  • The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW's retrograde backslope forming small retreat ridges to 680 m current depth (similar to 730-800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped.
  •  
8.
  • Jennings, Anne, et al. (författare)
  • Modern and early Holocene ice shelf sediment facies from Petermann Fjord and northern Nares Strait, northwest Greenland
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 283
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on sediment cores and geophysical data collected from Petermann Fjord and northern Nares Strait, NW Greenland, an Arctic ice shelf sediment facies is presented that distinguishes sub and pro ice shelf environments. Sediment cores were collected from sites beneath the present day Petermann Ice Tongue (PIT) and in deglacial sediments of northern Nares Strait with a focus on understanding the glacial and oceanographic history over the last 11,000 cal yr BP. The modern sub ice shelf sediment facies in Petermann Fjord is laminated and devoid of coarse clasts (IRD) due to strong basal melting that releases debris (debris filtering) from the basal ice at the grounding zone driven by buoyant subglacial meltwater and entrained Atlantic Water. Laminated sediments in the deep basin proximal to the gounding zone comprise layers of fine mud formed by suspension settling from turbid meltwater plumes (plumites) interrupted by normally graded very fine sand to medium silt layers with sharp basal contacts and rip-up clasts of mud, interpreted as turbidites. An inner fjord sill limits distribution of sediment gravity flows from the grounding zone to the deep inner fjord basin, such that sites on the inner sill and beyond the ice tongue largely only comprise plumites. Bioturbation and foraminiferal abundances increase with distance from the grounding zone. The benthic foraminiferal species, Elphidium clavatum is absent beneath the ice tongue, but dominant in the turbid meltwater influenced environment beyond the ice tongue. The very sparse IRD in sediments beneath the PIT and in the fjord beyond the PIT derives mainly from englacial debris in the ice tongue, side valley glaciers, rock falls from the steep fjord walls and sea ice.We use the modern ice shelf sediment facies characteristics to infer the past presence of ice shelves in northern Nares Strait using analyses of sediment cores from several cruises (OD1507, HLY03, 2001LSSL, RYDER19). On bathymetric highs, bioturbated mud with dispersed IRD overlies a 10–15 m thick, distinctly laminated silt and clay unit with rare coarse clasts and sparse foraminifera which forms a sediment drape of nearly uniform thickness. We interpret these laminated sediments to represent glaciomarine deposition by meltwater plumes emanating from ice streams that terminated in floating ice shelves. IRD layers, shifts in sediment composition (qXRD, MS and XRF) and faunal assemblage changes in the laminated unit document periods of ice-shelf instability sometimes, but not always, coupled with grounding zone retreat. Our deglacial reconstruction, including ice shelves, begins ∼10.7 cal ka BP, with confluent ice streams grounded in Hall Basin fronted by the Robeson Channel ice shelf. Ice shelf breakup and grounding zone retreat to relatively stable grounding zones at Kennedy Channel and the mouth of Petermann Fjord was accomplished by 9.4 cal ka BP when the Hall Basin ice shelf was established. This ice shelf broke up and reformed once prior to the final break up at 8.5 to 8.4 cal ka BP marking ice stream collapse, separation of Greenland and Innuitian ice sheets, and the opening of Nares Strait for Arctic-Atlantic throughflow. The Petermann ice shelf remained in Hall Basin until the Petermann Glacier retreated from the fjord mouth ∼7.1 cal ka BP. The resilience of these northern ice streams to strong early Holocene insolation and subsurface Atlantic Water advection is attributed to their northern aspect, buttressing by narrow passages, and high ice flux from the Greenland Ice Sheet (GIS).
  •  
9.
  • Jennings, Anne, et al. (författare)
  • Modern foraminiferal assemblages in northern Nares Strait, Petermann Fjord, and beneath Petermann ice tongue, NW Greenland
  • 2020
  • Ingår i: Arctic, Antarctic and Alpine research. - : Informa UK Limited. - 1523-0430 .- 1938-4246. ; 52:1, s. 491-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Calving events of Petermann Glacier, northwest Greenland, in 2010 and 2012 reduced the length of its ice tongue by c. 25 km, allowing exploration of newly uncovered seafloor during the Petermann 2015 Expedition. This article presents the results of foraminiferal analysis and environmental data from thirteen surface sediment samples in northern Nares Strait and Petermann Fjord, including beneath the modern ice tongue. This is the first study of living foraminifera beneath an arctic ice tongue and the first modern foraminiferal data from this area. Modern assemblages were studied to constrain species environmental preferences and to improve paleoenvironmental interpretations of foraminiferal assemblages. Sub-ice tongue assemblages differed greatly from those at all other sites, with very low faunal abundances and being dominated by agglutinated fauna, likely reflecting low food supply under the ice tongue. Fjord fauna were comprised of 80 percent or more calcareous species. Notably,Elphidium clavatumis absent beneath the ice tongue although it is dominant in the fjord. Increasing primary productivity associated with the transition to mobile sea ice, diminishing influence of the Petermann Glacier meltwater with distance from the grounding line, and increased influence of south-flowing currents in Nares Strait are the important controls on the faunal assemblages.
  •  
10.
  • O'Regan, Matt, et al. (författare)
  • The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
  • 2021
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 15:8, s. 4073-4097
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern sector of the Greenland Ice Sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedish icebreaker Oden entered the previously unchartered waters of Sherard Osborn Fjord, where Ryder Glacier drains approximately 2 % of Greenland's ice sheet into the Lincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier and its ice tongue by combining radiocarbon dating with sedimentary facies analyses along a 45 km transect of marine sediment cores collected between the modern ice tongue margin and the mouth of the fjord. The results illustrate that Ryder Glacier retreated from a grounded position at the fjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by the Middle Holocene (6.3±0.3 ka cal BP), likely becoming completely land-based. A re-advance of Ryder Glacier occurred in the Late Holocene, becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue, similar in extent to its current position was established in the Late Holocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) and extended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited during the entire retreat and regrowth phases, suggesting the persistence of an ice tongue that only collapsed when the glacier retreated behind a prominent topographic high at the landward end of the fjord. Sherard Osborn Fjord narrows inland, is constrained by steep-sided cliffs, contains a number of bathymetric pinning points that also shield the modern ice tongue and grounding zone from warm Atlantic waters, and has a shallowing inland sub-ice topography. These features are conducive to glacier stability and can explain the persistence of Ryder's ice tongue while the glacier remained marine-based. However, the physiography of the fjord did not halt the dramatic retreat of Ryder Glacier under the relatively mild changes in climate forcing during the Holocene. Presently, Ryder Glacier is grounded more than 40 km seaward of its inferred position during the Middle Holocene, highlighting the potential for substantial retreat in response to ongoing climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Jakobsson, Martin (7)
Melander, Olle (4)
Samani, Nilesh J. (4)
Onland-Moret, N Char ... (4)
Padmanabhan, Sandosh (4)
Hakonarson, Hakon (4)
visa fler...
Thorand, Barbara (4)
Koenig, Wolfgang (4)
Johnson, Toby (4)
Wijmenga, Cisca (4)
Lanktree, Matthew B. (4)
Baumert, Jens (4)
Gaunt, Tom R. (4)
Gong, Yan (4)
Shaffer, Jonathan (4)
Cooper-DeHoff, Rhond ... (4)
Illig, Thomas (4)
Shimbo, Daichi (4)
Berenson, Gerald S. (4)
Rader, Daniel J. (3)
Shuldiner, Alan R. (3)
Chen, Wei (3)
Nelson, Christopher ... (3)
Gieger, Christian (3)
Caulfield, Mark J. (3)
Munroe, Patricia B. (3)
Zhang, Li (3)
Pearce, Christof (3)
Fornage, Myriam (3)
Tragante, Vinicius (3)
de Bakker, Paul I. W ... (3)
Asselbergs, Folkert ... (3)
Guo, Yiran (3)
van Iperen, Erik P. ... (3)
Barnard, John (3)
Beitelshees, Amber L ... (3)
Kleber, Marcus E. (3)
Langaee, Taimour Y. (3)
Li, Yun R. (3)
McDonough, Caitrin W ... (3)
O'Connell, Jeffery R ... (3)
Schork, Nicholas J. (3)
Smith, Erin N. (3)
van der Most, Peter ... (3)
Boer, Jolanda M. A. (3)
Burt, Amber (3)
Gums, John G. (3)
Kirkland, Susan A. (3)
Kottke-Marchant, Kan ... (3)
Stolk, Ronald P. (3)
visa färre...
Lärosäte
Stockholms universitet (9)
Lunds universitet (4)
Göteborgs universitet (1)
Umeå universitet (1)
Örebro universitet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy