SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reine R) "

Sökning: WFRF:(Reine R)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abgrall, N., et al. (författare)
  • The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)
  • 2017
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1894
  • Konferensbidrag (refereegranskat)abstract
    • The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
  •  
2.
  • Carr, C., et al. (författare)
  • RPC : The rosetta plasma consortium
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:1-4, s. 629-647
  • Forskningsöversikt (refereegranskat)abstract
    • The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma enviromnent of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes Optimum use of the available mass and power resources.
  •  
3.
  • Kindlund, Hanna, et al. (författare)
  • Kinetic Engineering of Wurtzite and Zinc-Blende AlSb Shells on InAs Nanowires
  • 2018
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 18:9, s. 5775-5781
  • Tidskriftsartikel (refereegranskat)abstract
    • Using AlSb as the model system, we demonstrate that kinetic limitations can lead to the preferential growth of wurtzite (WZ) AlSb shells rather than the thermodynamically stable zinc-blende (ZB) AlSb and that the WZ and ZB relative thickness can be tuned by a careful control of the deposition parameters. We report selective heteroepitaxial radial growth of AlSb deposited by metal-organic vapor phase epitaxy (MOVPE) on InAs nanowire core templates with engineered lengths of axial WZ and ZB segments. AlSb shell thickness, crystal phase, nanostructure, and composition are investigated as a function of the shell growth temperature, Ts, using scanning electron microscopy, transmission electron microscopy, electron tomography, and energy-dispersive X-ray spectroscopy. We find that ZB- and WZ-structured AlSb shells grow heteroepitaxially around the ZB and WZ segments of the InAs core, respectively. Surprisingly, at 390 < Ts < 450 °C, the WZ-AlSb shells are thicker than the ZB-AlSb shells, and their thickness increases with decreasing Ts. In comparison, the ZB-AlSb shell thicknesses increase slightly with increasing Ts. We find that the increased thickness of the WZ-AlSb shells is due to the formation and enhanced deposition on {112-0} facets rather than on the more commonly grown {101-0} sidewall facets. Overall, these results, which are in direct contrast with previous reports suggesting that heteroepitaxial radial growth of III-antimonides is always favored on the ZB-structure facets, indicate that the growth of WZ-AlSb is preferred over the thermodynamically stable ZB-AlSb at lower growth temperatures. We attribute this behavior to kinetic limitations of MOVPE of AlSb on ZB and WZ phases of InAs.
  •  
4.
  • Aidas, Kestutis, et al. (författare)
  • The Dalton quantum chemistry program system
  • 2014
  • Ingår i: WIREs Computational Molecular Science. - : Wiley. - 1759-0876 .- 1759-0884. ; 4:3, s. 269-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.
  •  
5.
  •  
6.
  • Edberg, Niklas J. T., et al. (författare)
  • Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:11, s. 4263-4269
  • Tidskriftsartikel (refereegranskat)abstract
    • We use measurements from the Rosetta plasma consortium Langmuir probe and mutual impedance probe to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e., the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be approximate to 1-210(-6), at a cometocentric distance of 10km and at 3.1AU from the Sun. A clear 6.2h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisionless plasma within 260km from the nucleus falls off with radial distance as approximate to 1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.
  •  
7.
  • Harlow, Gary S., et al. (författare)
  • Observing growth under confinement : Sn nanopillars in porous alumina templates
  • 2019
  • Ingår i: Nanoscale Advances. - : Royal Society of Chemistry (RSC). - 2516-0230. ; 1:12, s. 4764-4771
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a micro-focused high-energy X-ray beam, we have performed in situ time-resolved depth profiling during the electrochemical deposition of Sn into an ordered porous anodic alumina template. Combined with micro-diffraction we are able to follow the variation of the structure at the atomic scale as a function of depth and time. We show that Sn initially deposits at the bottom of the pores, and forms metallic nanopillars with a preferred [100] orientation and a relatively low mosaicity. The lattice strain is found to differ from previous ex situ measurements where the Sn had been removed from the porous support. The dendritic nature of the pore bottom affects the Sn growth mode and results in a variation of Sn grain size, strain and mosaicity. Such atomic scale information of nano-templated materials during electrodeposition may improve the future fabrication of devices.
  •  
8.
  • Kilpi, Olli Pekka, et al. (författare)
  • High-Performance Vertical III-V Nanowire MOSFETs on Si with gm> 3 mS/μm
  • 2020
  • Ingår i: IEEE Electron Device Letters. - 0741-3106. ; 41:8, s. 1161-1164
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical III-V nanowire MOSFETs have demonstrated excellent performance including high transconductance and high Ion. One main bottleneck for the vertical MOSFETs is the large access resistance arising from the contacts and ungated regions. We demonstrate a process to reduce the access resistance by combining a gate-last process with ALD gate-metal deposition. The devices demonstrate fully scalable gm down to Lg = 25 nm. These vertical core/shell InAs/InGaAs MOSFETs demonstrate gm = 3.1 mS/μm and Ron = 190 Ωμm. This is the highest gm demonstrated on Si. Transmission line measurement verifies a low contact resistance with RC = 115 Ωμm, demonstrating that most of the MOSFET access resistance is located in the contact regions.
  •  
9.
  • Kilpi, Olli Pekka, et al. (författare)
  • Vertical InAs/InGaAs Heterostructure Metal-Oxide-Semiconductor Field-Effect Transistors on Si
  • 2017
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 17:10, s. 6006-6010
  • Tidskriftsartikel (refereegranskat)abstract
    • III-V compound semiconductors offer a path to continue Moore's law due to their excellent electron transport properties. One major challenge, integrating III-V's on Si, can be addressed by using vapor-liquid-solid grown vertical nanowires. InAs is an attractive material due to its superior mobility, although InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) typically suffer from band-to-band tunneling caused by its narrow band gap, which increases the off-current and therefore the power consumption. In this work, we present vertical heterostructure InAs/InGaAs nanowire MOSFETs with low off-currents provided by the wider band gap material on the drain side suppressing band-to-band tunneling. We demonstrate vertical III-V MOSFETs achieving off-current below 1 nA/μm while still maintaining on-performance comparable to InAs MOSFETs; therefore, this approach opens a path to address not only high-performance applications but also Internet-of-Things applications that require low off-state current levels.
  •  
10.
  • Krishnaraja, Abinaya, et al. (författare)
  • Tuning of Source Material for InAs/InGaAsSb/GaSb Application-Specific Vertical Nanowire Tunnel FETs
  • 2020
  • Ingår i: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:9, s. 2882-2887
  • Tidskriftsartikel (refereegranskat)abstract
    • Tunnel field-effect transistors (TFETs) are promising candidates that have demonstrated potential for and beyond the 3 nm technology node. One major challenge for the TFETs is to optimize the heterojunction for high drive currents while achieving steep switching. Thus far, such optimization has mainly been addressed theoretically. Here, we experimentally investigate the influence of the source segment composition on the performance for vertical nanowire InAs/InGaAsSb/GaSb TFETs. Compositional analysis using transmission electron microscopy is combined with simulations to interpret the results from electrical characterization data. The results show that subthreshold swing (S) and transconductance (gm) decrease with increasing arsenic composition until the strain due to lattice mismatch increases them both. The role of indium concentration at the junction is also examined. This systematic optimization has rendered sub-40 mV/dec operating TFETs with a record transconductance efficiency gm/ID = 100 V-1, and it shows that different source materials are preferred for various applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy