SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reinke Stacey N.) "

Sökning: WFRF:(Reinke Stacey N.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Jones, Jacquelyn M., et al. (författare)
  • Maternal prebiotic supplementation during pregnancy and lactation modifies the microbiome and short chain fatty acid profile of both mother and infant
  • 2024
  • Ingår i: Clinical Nutrition. - : CHURCHILL LIVINGSTONE. - 0261-5614 .- 1532-1983. ; 43:4, s. 969-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & aims: Improving maternal gut health in pregnancy and lactation is a potential strategy to improve immune and metabolic health in offspring and curtail the rising rates of inflammatory diseases linked to alterations in gut microbiota. Here, we investigate the effects of a maternal prebiotic supplement (galacto-oligosaccharides and fructo-oligosaccharides), ingested daily from <21 weeks' gestation to six months' post-partum, in a double-blinded, randomised placebo-controlled trial. Methods: Stool samples were collected at multiple timepoints from 74 mother-infant pairs as part of a larger, double-blinded, randomised controlled allergy intervention trial. The participants were randomised to one of two groups; with one group receiving 14.2 g per day of prebiotic powder (galacto-oligosaccharides GOS and fructo-oligosaccharides FOS in ratio 9:1), and the other receiving a placebo powder consisting of 8.7 g per day of maltodextrin. The faecal microbiota of both mother and infants were assessed based on the analysis of bacterial 16S rRNA gene (V4 region) sequences, and short chain fatty acid (SCFA) concentrations in stool. Results: Significant differences in the maternal microbiota profiles between baseline and either 28weeks' or 36-weeks' gestation were found in the prebiotic supplemented women. Infant microbial beta-diversity also significantly differed between prebiotic and placebo groups at 12-months of age. Supplementation was associated with increased abundance of commensal Bifidobacteria in the maternal microbiota, and a reduction in the abundance of Negativicutes in both maternal and infant microbiota. There were also changes in SCFA concentrations with maternal prebiotics supplementation, including significant differences in acetic acid concentration between intervention and control groups from 20 to 28-weeks' gestation. Conclusion: Maternal prebiotic supplementation of 14.2 g per day GOS/FOS was found to favourably modify both the maternal and the developing infant gut microbiome. These results build on our understanding of the importance of maternal diet during pregnancy, and indicate that it is possible to intervene and modify the development of the infant microbiome by dietary modulation of the maternal gut microbiome. (c) 2024 Published by Elsevier Ltd.
  •  
3.
  • Reinke, Stacey N., et al. (författare)
  • OnPLS-Based Multi-Block Data Integration : A Multivariate Approach to Interrogating Biological Interactions in Asthma
  • 2018
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 90:22, s. 13400-13408
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of multiomics data remains a key challenge in fulfilling the potential of comprehensive systems biology. Multiple-block orthogonal projections to latent structures (OnPLS) is a Multi projection method that simultaneously models multiple data matrices, reducing feature space without relying on a priori biological knowledge. In order to improve the interpretability of OnPLS models, the associated multi-block variable influence on orthogonal projections (MB-VIOP) method is used to identify variables with the highest contribution to the model. This study combined OnPLS and MB-VIOP with interactive visualization methods to interrogate an exemplar multiomics study, using a subset of 22 individuals from an asthma cohort. Joint data structure in six data blocks was assessed: transcriptomics; metabolomics; targeted assays for sphingolipids, oxylipins, and fatty acids; and a clinical block including lung function, immune cell differentials, and cytokines. The model identified seven components, two of which had contributions from all blocks (globally joint structure) and five that had contributions from two to five blocks (locally joint structure). Components 1 and 2 were the most informative, identifying differences between healthy controls and asthmatics and a disease sex interaction, respectively. The interactions between features selected by MB-VIOP were visualized using chord plots, yielding putative novel insights into asthma disease pathogenesis, the effects of asthma treatment, and biological roles of uncharacterized genes. For example, the gene ATP6 V1G1, which has been implicated in osteoporosis, correlated with metabolites that are dysregulated by inhaled corticoid steroids (ICS), providing insight into the mechanisms underlying bone density loss in asthma patients taking ICS. These results show the potential for OnPLS, combined with MB-VIOP variable selection and interaction visualization techniques, to generate hypotheses from multiomics studies and inform biology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy