SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reis Filipa) "

Sökning: WFRF:(Reis Filipa)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • García-Palacios, Pablo, et al. (författare)
  • Crop traits drive soil carbon sequestration under organic farming
  • 2018
  • Ingår i: Journal of Applied Ecology. - Chichester : Wiley. - 0021-8901 .- 1365-2664. ; 55:5, s. 2496-2505
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic farming (OF) enhances top soil organic carbon (SOC) stocks in croplands compared with conventional farming (CF), which can contribute to sequester C. As farming system differences in the amount of C inputs to soil (e.g. fertilization and crop residues) are not enough to explain such increase, shifts in crop residue traits important for soil C losses such as litter decomposition may also play a role. To assess whether crop residue (leaf and root) traits determined SOC sequestration responses to OF, we coupled a global meta-analysis with field measurements across a European-wide network of sites. In the meta-analysis, we related crop species averages of leaf N, leaf-dry matter content, fine-root C and N, with SOC stocks and sequestration responses in OF vs. CF. Across six European sites, we measured the management-induced changes in SOC stocks and leaf litter traits after long-term ecological intensive (e.g. OF) vs. CF comparisons. Our global meta-analysis showed that the positive OF-effects on soil respiration, SOC stocks, and SOC sequestration rates were significant even in organic farms with low manure application rates. Although fertilization intensity was the main driver of OF-effects on SOC, leaf and root N concentrations also played a significant role. Across the six European sites, changes towards higher leaf litter N in CF also promoted lower SOC stocks. Our results highlight that crop species displaying traits indicative of resource-acquisitive strategies (e.g. high leaf and root N) increase the difference in SOC between OF and CF. Indeed, changes towards higher crop residue decomposability was related with decreased SOC stocks under CF across European sites. Synthesis and applications. Our study emphasizes that, with management, changes in crop residue traits contribute to the positive effects of organic farming (OF) on soil carbon sequestration. These results provide a clear message to land managers: the choice of crop species, and more importantly their functional traits (e.g. leave and root nitrogen), should be considered in addition to management practices and climate, when evaluating the potential of OF for climate change mitigation.
  •  
2.
  • Grilo, Filipa, et al. (författare)
  • A trait-based conceptual framework to examine urban biodiversity, socio-ecological filters, and ecosystem services linkages
  • 2022
  • Ingår i: npj Urban Sustainability. - : Springer Science and Business Media LLC. - 2661-8001. ; 2
  • Forskningsöversikt (refereegranskat)abstract
    • Maximizing the functional performance of urban green infrastructure is important to deliver critical ecosystem services that support human well-being. However, urban ecosystems are impacted by social and ecological filters that affect biodiversity, shaping how species’ traits are functionally expressed, thus affecting ecosystem services supply. Our Social–Ecological Traits Framework addresses the impacts of socio-ecological systems on the phenotypic expression of traits and ecosystem services delivery. This functional approach to examining the supply of ecosystem services can improve the incorporation of biodiversity knowledge in urban planning decisions for maximizing the effectiveness of ecosystem services as nature-based solutions under multiple types of social and environmental change.
  •  
3.
  •  
4.
  • Grilo, Filipa, et al. (författare)
  • Where the not-so-wild things are in cities? The influence of social-ecological factors in urban trees at multiple scales
  • 2024
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 929
  • Tidskriftsartikel (refereegranskat)abstract
    • Green infrastructure plays an essential role in cities due to the ecosystem services it provides. However, these elements are shaped by social and ecological factors that influence their distribution and diversity, affecting ecological functions and human well-being. Here, we analyzed neighborhood tree distribution - trees in pocket parks, squares and along streets – in Lisbon (Portugal) and modelled tree abundance and taxonomic and functional diversity, at the parish and local scales, considering a comprehensive list of social and ecological factors. For the functional analyses, we included functional traits linked to dispersal, resilience to important perturbations in coastal Mediterranean cities, and ecosystem services delivery. Our results show not only that trees are unevenly distributed across the city, but that there is a strong influence of social factors on all biological indices considered. At the parish and local scales, abundance and diversity responded to different factors, with abundance being linked to both social and ecological variables. Although the influence of social factors on urban trees can be expected, by modelling their influence we can quantify how much humans modify urban landscapes at a structural and functional level. These associations can underlie potential biodiversity filters and should be analyzed over time to inform decisions that support long-term ecological resilience, maximize trait functional expression, and increase equity in ecosystem services delivery.
  •  
5.
  • Griswold, Max G., et al. (författare)
  • Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 392:10152, s. 1015-1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older.Methods: Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health.Findings: Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week.Interpretation: Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.
  •  
6.
  • Pedro, Joana Reis, et al. (författare)
  • Transient gain of function of cannabinoid CB1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes
  • 2020
  • Ingår i: Brain Research Bulletin. - : Elsevier BV. - 0361-9230. ; 161, s. 106-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we aimed to unify some previous controversial reports on changes in both cannabinoid CB1 receptor (CB1R) expression and glucose metabolism in the forebrain of rodent models of diabetes. We determined how glucose metabolism and its modulation by CB1R ligands evolve in the frontal cortex of young adult male Wistar rats, in the first 8 weeks of streptozotocin-induced type-1 diabetes (T1D). We report that frontocortical CB1R protein density was biphasically altered in the first month of T1D, which was accompanied with a reduction of resting glucose uptake ex vivo in acute frontocortical slices that was normalized after eight weeks in T1D. This early reduction of glucose uptake in slices was also restored by ex vivo treatment with both the non-selective CB1R agonists, WIN55212−2 (500 nM) and the CB1R-selective agonist, ACEA (3 μM) while it was exacerbated by the CB1R-selective antagonist, O-2050 (500 nM). These results suggest a gain-of-function for the cerebrocortical CB1Rs in the control of glucose uptake in diabetes. Although insulin and IGF-1 receptor protein densities remained unaffected, phosphorylated GSKα and GSKβ levels showed different profiles 2 and 8 weeks after T1D induction in the frontal cortex. Altogether, the biphasic response in frontocortical CB1R density within a month after T1D induction resolves previous controversial reports on forebrain CB1R levels in T1D rodent models. Furthermore, this study also hints that cannabinoids may be useful to alleviate impaired glucoregulation in the diabetic cortex.
  •  
7.
  • Piton, Gabin, et al. (författare)
  • Disentangling drivers of soil microbial potential enzyme activity across rain regimes : An approach based on the functional trait framework
  • 2020
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717. ; 148
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional trait framework provides a powerful corpus of integrated concepts and theories to assess how environmental factors influence ecosystem functioning through community assembly. While common in plant ecology, this approach is under-used in microbial ecology. After an introduction of this framework in the context of microbial ecology and enzymology, we propose an approach 1) to elucidate new links between soil microbial community composition and microbial traits; and 2) to disentangle mechanisms underlying “total” potential enzyme activity in soil (sum of 7 hydrolase potential activities). We address these objectives using a terrestrial grassland ecosystem model experiment with intact soil monoliths from three European countries (Switzerland, France and Portugal) and two management types (Conventional-intensive and Ecological-intensive), subjected to 4 rain regimes (Dry, Wet, Intermittent and Normal) under controlled conditions in a common climate chamber. We found tight associations between proxies of microbial ecoenzymatic community-weighted mean traits (enzymatic stoichiometry and biomass-specific activity) and community composition, bringing new information on resource acquisition strategy associated with fungi, Gram positive and Gram negative bacteria. We demonstrate that microbial biomass explained most of the total enzyme activity before altered rain regimes, whereas adjustments in biomass-specific activity (enzyme activity per unit of microbial biomass) explained most variation under altered rain regime scenarios. Furthermore, structural equation models revealed that the variation of community composition was the main driver of the variation in biomass-specific enzyme activity prior to rain perturbation, whereas physiological acclimation or evolutionary adaptation became an important driver only under altered rain regimes. This study presents a promising trait-based approach to investigate soil microbial community response to environmental changes and potential consequences for ecosystem functioning. We argue that the functional trait framework should be further implemented in microbial ecology to guide experimental and analytical design.
  •  
8.
  • Piton, Gabin, et al. (författare)
  • Resistance–recovery trade-off of soil microbial communities under altered rain regimes : An experimental test across European agroecosystems
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:2, s. 406-418
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increased occurrence of climate extremes, there is an urgent need to better understand how management strategies affect the capacity of the soil microbial community to maintain its ecosystem functions (e.g. nutrient cycling). To address this issue, intact monoliths were extracted from conventional and ecological managed grasslands in three countries across Europe and exposed under common air condition (temperature and moisture) to one of three altered rain regimes (dry, wet and intermittent wet/dry) as compared to a normal regime. Subsequently, we compared the resistance and recovery of the soil microbial biomass, potential enzyme activities and community composition. The microbial community composition differed with soil management and rain regimes. Soil microbial biomass increased from the wetter to the dryer rain regime, paralleling an increase of available carbon and nutrients, suggesting low sensitivity to soil moisture reduction but nutritional limitations of soil microbes. Conversely, enzyme activities decreased with all altered rain regimes. Resistance and recovery (considering absolute distance between normal and altered rain regime) of the microbial communities depended on soil management. Conventional-intensive management showed higher resistance of two fundamental properties for nutrient cycling (i.e. bacterial biomass and extracellular enzyme activities) yet associated with more important changes in microbial community composition. This suggests an internal community reorganization promoting biomass and activity resistance. Conversely, under ecological management bacterial biomass and enzyme activities showed better recovery capacity, whereas no or very low recovery of these properties was observed under conventional management. These management effects were consistent across the three altered rain regimes investigated, indicating common factors controlling microbial communities’ response to different climate-related stresses. Synthesis and applications. Our study provides experimental evidence for an important trade-off for agroecosystem management between (a) stabilizing nutrient cycling potential during an altered rain regime period at the expense of very low recovery capacity and potential long-term effect (conventional sites) and (b) promoting the capacity of the microbial community to recover its functional potential after the end of the stress (ecological sites). Thus, management based on ecologically sound principles may be the best option to sustain long-term soil functioning under climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Larsson, Anders (1)
Ärnlöv, Johan, 1970- (1)
Hankey, Graeme J. (1)
Wijeratne, Tissa (1)
Sahebkar, Amirhossei ... (1)
van Boven, Job F. M. (1)
visa fler...
McKee, Martin (1)
Madotto, Fabiana (1)
Koyanagi, Ai (1)
Zaidi, Zoubida (1)
Aboyans, Victor (1)
Koul, Parvaiz A. (1)
Bjorge, Tone (1)
Weiderpass, Elisabet ... (1)
Brenner, Hermann (1)
Dhimal, Meghnath (1)
Sheikh, Aziz (1)
Adhikari, Tara Balla ... (1)
Acharya, Pawan (1)
Hay, Simon I. (1)
Salama, Joseph S. (1)
Abate, Kalkidan Hass ... (1)
Abbafati, Cristiana (1)
Abebe, Zegeye (1)
Afarideh, Mohsen (1)
Agrawal, Sutapa (1)
Akinyemiju, Tomi (1)
Alahdab, Fares (1)
Badali, Hamid (1)
Badawi, Alaa (1)
Bensenor, Isabela M. (1)
Bernabe, Eduardo (1)
Carrero, Juan J. (1)
Zaki, Maysaa El Saye ... (1)
Esteghamati, Alireza (1)
Farvid, Maryam S. (1)
Farzadfar, Farshad (1)
Feigin, Valery L. (1)
Forouzanfar, Mohamma ... (1)
Ganji, Morsaleh (1)
Geleijnse, Johanna M ... (1)
Goulart, Alessandra ... (1)
Grosso, Giuseppe (1)
Hamidi, Samer (1)
Harikrishnan, Sivada ... (1)
Hassen, Hamid Yimam (1)
Jackson, Maria D. (1)
Jonas, Jost B. (1)
Kasaeian, Amir (1)
Khalil, Ibrahim A. (1)
visa färre...
Lärosäte
Stockholms universitet (4)
Lunds universitet (4)
Uppsala universitet (1)
Högskolan i Halmstad (1)
Södertörns högskola (1)
Chalmers tekniska högskola (1)
visa fler...
Karolinska Institutet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Lantbruksvetenskap (3)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy