SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reissl S.) "

Sökning: WFRF:(Reissl S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petkova, Maya, 1990, et al. (författare)
  • The complex multiscale structure in simulated and observed emission maps of the proto-cluster cloud G0.253+0.016 ('the Brick')
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:2, s. 2245-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Molecular Zone (the central ∼500 pc of the Milky Way) hosts molecular clouds in an extreme environment of strong shear, high gas pressure and density, and complex chemistry. G0.253+0.016, also known as 'the Brick', is the densest, most compact, and quiescent of these clouds. High-resolution observations with the Atacama Large Millimetre/submillimetre Array (ALMA) have revealed its complex, hierarchical structure. In this paper we compare the properties of recent hydrodynamical simulations of the Brick to those of the ALMA observations. To facilitate the comparison, we post-process the simulations and create synthetic ALMA maps of molecular line emission from eight molecules. We correlate the line emission maps to each other and to the mass column density and find that HNCO is the best mass tracer of the eight emission lines within the simulations. Additionally, we characterize the spatial structure of the observed and simulated cloud using the density probability distribution function (PDF), spatial power spectrum, fractal dimension, and moments of inertia. While we find good agreement between the observed and simulated data in terms of power spectra and fractal dimensions, there are key differences in the density PDFs and moments of inertia, which we attribute to the omission of magnetic fields in the simulations. This demonstrates that the presence of the Galactic potential can reproduce many cloud properties, but additional physical processes are needed to fully explain the gas structure.
  •  
2.
  • Alvarez-Gutierrez, R. H., et al. (författare)
  • Filament Rotation in the California L1482 Cloud
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 908:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the gas mass distribution, the gas kinematics, and the young stellar objects of the California Molecular Cloud L1482 filament. The mean Gaia DR2 YSO distance is 511(-16)(+17) pc. In terms of the gas, the line-mass (M/L) profiles are symmetric scale-free power laws consistent with cylindrical geometry. We calculate the gravitational potential and field profiles based on these. Our IRAM 30 m multi-tracer position-velocity diagrams highlight twisting and turning structures. We measure the (CO)-O-18 velocity profile perpendicular to the southern filament ridgeline. The profile is regular, confined (projected r less than or similar to 0.4 pc), antisymmetric, and, to first order, linear, with a break at r similar to 0.25 pc. We use a simple solid-body rotation toy model to interpret it. We show that the centripetal force, compared to gravity, increases toward the break; when the ratio of forces approaches unity, the profile turns over, just before the implied filament breakup. The timescales of the inner (outer) gradients are similar to 0.7 (6.0) Myr. The timescales and relative roles of gravity to rotation indicate that the structure is stable, long lived (similar to a few times 6 Myr), and undergoing outside-in evolution. This filament has practically no star formation, a perpendicular Planck plane-of-the-sky magnetic field morphology, and 2D "zig-zag" morphology, which together with the rotation profile lead to the suggestion that the 3D shape is a "corkscrew" filament. These results, together with results in other regions, suggest evolution toward higher densities as rotating filaments shed angular momentum. Thus, magnetic fields may be an essential feature of high-mass (M similar to 10(5) M) cloud filament evolution toward cluster formation.
  •  
3.
  • Kuffmeier, M., et al. (författare)
  • Linear dust polarization during the embedded phase of protostar formation: Synthetic observations of bridge structures
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring polarization from thermal dust emission can provide important constraints on the magnetic field structure around embedded protostars. However, interpreting the observations is challenging without models that consistently account for both the complexity of the turbulent protostellar birth environment and polarization mechanisms. Aims. We aim to provide a better understanding of dust polarization maps of embedded protostars with a focus on bridge-like structures such as the structure observed toward the protostellar multiple system IRAS 16293-2422 by comparing synthetic polarization maps of thermal reemission with recent observations. Methods. We analyzed the magnetic field morphology and properties associated with the formation of a protostellar multiple based on ideal magnetohydrodynamic 3D zoom-in simulations carried out with the » RAMSES code. To compare the models with observations, we postprocessed a snapshot of a bridge-like structure that is associated with a forming triple star system with the radiative transfer code » POLARIS and produced multiwavelength dust polarization maps. Results. The typical density in the most prominent bridge of our sample is about 10-16 g cm-3, and the magnetic field strength in the bridge is about 1 to 2 mG. Inside the bridge, the magnetic field structure has an elongated toroidal morphology, and the dust polarization maps trace the complex morphology. In contrast, the magnetic field strength associated with the launching of asymmetric bipolar outflows is significantly more magnetized (∼100 mG). At λ = 1.3 mm, and the orientation of the grains in the bridge is very similar for the case accounting for radiative alignment torques (RATs) compared to perfect alignment with magnetic field lines. However, the polarization fraction in the bridge is three times smaller for the RAT scenario than when perfect alignment is assumed. At shorter wavelength (λ 200 μm), however, dust polarization does not trace the magnetic field because other effects such as self-scattering and dichroic extinction dominate the orientation of the polarization. Conclusions. Compared to the launching region of protostellar outflows, the magnetic field in bridge-like structures is weak. Synthetic dust polarization maps of ALMA Bands 6 and 7 (1.3 mm and 870 μm, respectively) can be used as a tracer of the complex morphology of elongated toroidal magnetic fields associated with bridges.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy