SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reitalu Triin) "

Sökning: WFRF:(Reitalu Triin)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biurrun, Idoia, et al. (författare)
  • Benchmarking plant diversity of Palaearctic grasslands and other open habitats
  • 2021
  • Ingår i: Journal of Vegetation Science. - Oxford : John Wiley & Sons. - 1100-9233 .- 1654-1103. ; 32:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology. © 2021 The Authors.
  •  
2.
  • de Bello, Francesco, et al. (författare)
  • Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands
  • 2013
  • Ingår i: Journal of Ecology. - : Wiley. - 1365-2745 .- 0022-0477. ; 101:5, s. 1237-1244
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The mechanisms driving nonrandom assembly patterns in plant communities have long been of interest in ecological research. Competing ecological theories predict that coexisting species may either be more functionally dissimilar than expected by chance (with functional divergence' mainly reflecting niche differentiation) or be functionally more similar than expected (with functional convergence' reflecting either the outcome of environmental filtering or weaker-competitor exclusion effects). Assembly patterns are usually assessed at a single scale and disturbance regime, whereas considering different spatial scales and disturbance regimes may clarify the underlying assembly mechanisms. 2. We tested the prediction that convergence and divergence are scale- and disturbance- dependent in grazed and abandoned species-rich dry grasslands within a 22km(2) landscape in south-eastern Sweden. Convergence and divergence were tested for plant species' traits and phylogenetic relationships at three nested spatial scales: within 412 plots (50x50cm, divided into 10x10cm subplots), within 117 grassland patches (from 0.02 to 11.63ha) and within the whole landscape (across patches). 3. At the finest scale (10x10cm subplots within plots), coexisting species were more different than expected by chance (divergence), both functionally and phylogenetically, suggesting niche differentiation. At the intermediate scale (50x50cm plots within patches), coexisting species showed convergence, suggesting environmental filtering. No significant deviations from random expectations were detected at the broadest scale (patches within the 22km(2) landscape) - suggesting the prevalence of dispersal limitation at this scale. The fact that nonrandom patterns were particularly evident under grazed conditions is consistent with the prediction that assembly patterns are disturbance dependent. 4. Synthesis. This study shows that multiple trait-based assembly processes operate simultaneously in species-rich communities, across spatial scales and disturbance regimes. The results support earlier theoretical predictions that divergence between coexisting species may be an important driver of community assembly, particularly at finer spatial scales, where species compete for the same local resources. In contrast, environmental filtering is expected at broader spatial scales, where species growing in particular environmental conditions share traits that are adaptive under those conditions. Within given habitat types, dispersal limitation may, however, override environmental filtering at increasing spatial scales of observation.
  •  
3.
  • Dengler, Juergen, et al. (författare)
  • GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
  • 2018
  • Ingår i: Phytocoenologia. - : Schweizerbart. - 0340-269X. ; 48:3, s. 331-347
  • Tidskriftsartikel (refereegranskat)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.
  •  
4.
  • Hall, Karin, et al. (författare)
  • Inventorying management status and plant species richness in semi-natural grasslands using high spatial resolution imagery
  • 2010
  • Ingår i: Applied Vegetation Science. - 1402-2001. ; 13:2, s. 221-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Question Can we reliably estimate grazing intensity, indicators of grazing intensity (i.e. field-layer height and shrub-cover), and vascular plant species richness in semi-natural grasslands from high spatial resolution satellite data? Location The Baltic Island of Oland (Sweden). Methods Fieldwork included the on-site description of grazed and ungrazed areas and shrub-cover within 107 semi-natural grassland sites. Field-layer height and vascular plant species richness (total within-site and mean small-scale species richness) were recorded within the sites. Digital classification of QuickBird data was performed to identify grazed and ungrazed areas and shrub-cover. Vegetation indices were generated to analyze the performance of satellite data for estimating field-layer height, and the spectral heterogeneity was used to characterize the within-site environmental heterogeneity. Results The proportion of digitally classified grazed area explained 45% of the variation in field-layer height and 43% of the variation in shrub-cover. Field-layer height was significantly related to vegetation indices. A linear model with three explanatory variables (spectral richness(red), spectral richness(NIR), and shrub-cover) explained 47% of the variation in total within-site species richness. Conclusions High spatial resolution imagery may assist in the monitoring of the processes that follow the cessation of grazing, on the scale of individual grassland sites. Measures of spectral heterogeneity acquired by high spatial resolution imagery can be used in the assessment of total within-site vascular plant species richness in semi-natural grassland vegetation.
  •  
5.
  • Hall, Karin, et al. (författare)
  • Spectral heterogeneity of QuickBird satellite data is related to fine-scale plant species spatial turnover in semi-natural grasslands
  • 2012
  • Ingår i: Applied Vegetation Science. - 1402-2001. ; 15:1, s. 145-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Question: Can satellite data be related to fine-scale species diversity and does the integrated use of field and satellite data provide information that can be used in the estimation of fine-scale species diversity in semi-natural grassland sites? Location: The Baltic Island of Oland (Sweden). Methods: Field work including the on-site description of 62 semi-natural grassland sites (represented by three 0.5m0.5m plots per site) was performed to record response variables (total species richness, mean species richness and species spatial turnover) and field-measured explanatory variables (field-layer height and distance between plots). Within each site, QuickBird satellite data were extracted from a standardized sample area by associating each field plot with a 33 pixel window (1 pixel = 2.4m2.4 m). Explanatory variables (the normalized difference vegetation index and spectral heterogeneity) were generated from the satellite data. Correlation tests, univariate regressions, variance partitioning and multivariate linear regressions were used to analyse the associations between response and explanatory variables. Results: There was a significant association between the spectral heterogeneity of the near-infrared band and the field-measured spatial turnover of species. The most parsimonious explanatory model for each response variable included both field-measured and satellite-generated explanatory variables. The models explained 30–35% of the variation in species diversity (total richness 36%, mean richness 31%, species turnover 33%). Conclusions: High spatial resolution satellite data are capable of supplying fine-scale habitat information that is relevant for the monitoring and conservation management of fine-scale plant diversity in semi-natural grasslands.
  •  
6.
  • Johansson, Lotten, et al. (författare)
  • Semi-natural grassland continuity, long-term land-use change and plant species richness in a local agricultural landscape on Öland, Sweden
  • 2008
  • Ingår i: Landscape and Urban Planning. - : Elsevier BV. - 0169-2046 .- 1872-6062. ; :84, s. 200-211
  • Tidskriftsartikel (refereegranskat)abstract
    • The study characterizes historical land-use change and the development of semi-natural grassland habitats, over 274 years, within a mosaic agricultural landscape (22 km2) on the island of O¨ land (Sweden). We also explore the relationship between previous land-use, habitat continuity and present-day vascular plant species richness in grassland patches.Land-cover maps, based on cadastral maps and aerial photographs, wereproduced for six time-periods between 1723/1733 and 1994/1997. In 1723/1733, the landscape was dominated by grasslands, with arable land surrounding the villages. The grassland area decreased throughout the study period and grassland patches became progressively more fragmented.Present-day grasslands represent 18% of the grassland area in 1723/1733. The land-use structure of the early 18th century is still evident in the modern landscape. The majority of the present-day grasslands are situated on former common grazing land and have had a continuity of at least 274 years: the remaining grasslands are younger and developed during the 20th century on arable or forested land.The proportion of plant speciesthat depend on grazing and are characteristic of semi-natural grasslands significantly reflects the continuity and previous land-use of grassland sites. The study illustrates the way in which information on historical land-use and habitat continuity can help to explain the structuring of plant assemblages in semi-natural grasslands within the modern landscape.
  •  
7.
  • Kuosmanen, Niina, et al. (författare)
  • The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia
  • 2018
  • Ingår i: Journal of Vegetation Science. - : Wiley-Blackwell. - 1100-9233 .- 1654-1103. ; 29:3, s. 382-392
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionsWe investigated the changing role of climate, forest fires and human population size in the broad-scale compositional changes in Holocene vegetation dynamics before and after the onset of farming in Sweden (at 6,000cal yr BP) and in Finland (at 4,000calyr BP). LocationSouthern and central Sweden, SW and SE Finland. MethodsHolocene regional plant abundances were reconstructed using the REVEALS model on selected fossil pollen records from lakes. The relative importance of climate, fires and human population size on changes in vegetation composition was assessed using variation partitioning. Past climate variable was derived from the LOVECLIM climate model. Fire variable was reconstructed from sedimentary charcoal records. Estimated trend in human population size was based on the temporal distribution of archaeological radiocarbon dates. ResultsClimate explains the highest proportion of variation in vegetation composition during the whole study period in Sweden (10,000-4,000cal yr BP) and in Finland (10,000-1,000cal yr BP), and during the pre-agricultural period. In general, fires explain a relatively low proportion of variation. Human population size has significant effect on vegetation dynamics after the onset of farming and explains the highest variation in vegetation in S Sweden and SW Finland. ConclusionsMesolithic hunter-gatherer populations did not significantly affect vegetation composition in Fennoscandia, and climate was the main driver of changes at that time. Agricultural communities, however, had greater effect on vegetation dynamics, and the role of human population size became a more important factor during the late Holocene. Our results demonstrate that climate can be considered the main driver of long-term vegetation dynamics in Fennoscandia. However, in some regions the influence of human population size on Holocene vegetation changes exceeded that of climate and has a longevity dating to the early Neolithic.
  •  
8.
  • Meltsov, Vivika, et al. (författare)
  • The role of landscape structure in determining palynological and floristic richness
  • 2013
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 22:1, s. 39-49
  • Tidskriftsartikel (refereegranskat)abstract
    • The associations between floristic and palynological richness and landscape structure were studied based on modern pollen-vegetation data from a patchy cultural landscape in southern Estonia (northern temperate vegetation zone). Nine study sites (small lakes and their surrounding vegetation) represent land cover gradient from closed forest to semi-open vegetation. Floristic richness (number of species) and floristic richness of pollen types (number of pollen-equivalent taxa) were used to describe the vegetation within the radius of 250 m from the pollen sampling sites. Palynological richness was calculated to describe the modern pollen samples diversity. Landscape structure was estimated on the basis of landscape openness and three landscape diversity measures: richness of community patches, Simpson evenness of community patches and Simpson diversity of community patches. To study the effect of the spatial scale of landscapes on the vegetation-landscape and pollen-landscape associations, landscape structure was estimated within eight radii (250-2,000 m) around each lake. The results showed that landscape openness was the most important determinant of both floristic richness and palynological richness in southern Estonia and that landscape diversity estimated by Simpson diversity index was also significantly associated with the richness estimates. Floristic and palynological richness were significantly positively correlated with landscape structure within the radii greater than 1,000 m from the pollen sampling sites, which is similar to the estimated Relevant Source Area of Pollen in southern Estonia. We conclude that within one floristic or climatic region, palynological richness gives reliable estimates about the variation in floristic richness and landscape structure; however, caution must be taken when comparing pollen-inferred vegetation diversities from different regions or when interpreting fossil pollen records from times with highly different vegetation associations.
  •  
9.
  • Partel, M, et al. (författare)
  • Grassland diversity related to the Late Iron Age human population density
  • 2007
  • Ingår i: Journal of Ecology. - : Wiley. - 1365-2745 .- 0022-0477. ; 95:3, s. 574-582
  • Tidskriftsartikel (refereegranskat)abstract
    • 1 Species-rich semi-natural grasslands in Europe developed during prehistoric times and have endured due to human activity. At the same time, intensive grassland management or changes in land use may result in species extinction. As a consequence, plant diversity in semi-natural calcareous grasslands may be related to both historical and current human population density. 2 We hypothesize that current vascular plant diversity in semi-natural calcareous grasslands is positively correlated with the Late Iron Age (c. 800-1000 years ago) density of human settlements (indicated by Late Iron Age fortresses and villages) due to enhancement of grassland extent and species dispersal, and negatively correlated with current human population density due to habitat loss and deterioration. 3 We described the size of the community vascular plant species pool, species richness per 1 m(2) and the relative richness (richness divided by the size of the species pool) in 45 thin soil, calcareous (alvar) grasslands in Estonia. In addition to historical and current human population density we considered simultaneously the effects of grassland area, connectivity to other alvar grasslands, elevation above sea level (indicating grassland age), soil pH, soil N, soil P, soil depth, soil depth heterogeneity, geographical east-west gradient, precipitation and spatial autocorrelation. 4 Both the size of the community species pool and the species richness are significantly correlated with the Late Iron Age human population density. In addition, species richness was unimodally related to the current human population density. The relative richness (species 'packing density') was highest in the intermediate current human population densities, indicative of moderate land-use intensity. 5 Community species pool size decreased non-linearly with increasing soil N, and was highest at intermediate elevation. Small-scale richness was greater when sites were well connected and when the elevation was intermediate. Spatial autocorrelation was also significant for both species pool size and small-scale richness. 6 In summary, human land-use legacy from prehistoric times is an important aspect in plant ecology, which could be an important contributor to the current variation in biodiversity.
  •  
10.
  • Purschke, Oliver, et al. (författare)
  • Linking landscape history and dispersal traits in grassland plant communities
  • 2012
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 1432-1939 .- 0029-8549. ; 168:3, s. 773-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersal limitation and long-term persistence are known to delay plant species’ responses to habitat fragmentation, but it is still unclear to what extent landscape history may explain the distribution of dispersal traits in present-day plant communities. We used quantitative data on long-distance seed dispersal potential by wind and grazing cattle (epi- and endozoochory), and on persistence (adult plant longevity and seed bank persistence) to quantify the linkages between dispersal and persistence traits in grassland plant communities and current and past landscape configurations. The long-distance dispersal potential of present-day communities was positively associated with the amounts of grassland in the historical (1835, 1938) landscape, and with a long continuity of grazing management— but was not associated with the properties of the current landscape. The study emphasises the role of history as a determinant of the dispersal potential of present-day grassland plant communities. The importance of long-distance dispersal processes has declined in the increasingly fragmented modern landscape, and long-term persistent species are expected to play a more dominant role in grassland communities in the future. However, even within highly fragmented landscapes, long-distance dispersed species may persist locally—delaying the repayment of the extinction debt.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (23)
konferensbidrag (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Reitalu, Triin (27)
Prentice, Honor C (19)
Sykes, Martin (13)
Lönn, Mikael (4)
Poska, Anneli (4)
Rosén, Ejvind (4)
visa fler...
Vandewalle, Marie (3)
Veski, Siim (2)
Rosengren, Frida (2)
De Frenne, Pieter (2)
Diekmann, Martin (2)
Pakeman, Robin J. (2)
Pielech, Remigiusz (2)
Boch, Steffen (2)
Bengtsson, Karin (2)
Jentsch, Anke (2)
Cronberg, Nils (2)
Wang, Yun (2)
Renssen, Hans (2)
Bruun, Hans Henrik (2)
Seppa, Heikki (2)
Becker, Thomas (2)
Hajek, Michal (2)
Natcheva, Rayna (2)
Bengtsson, Karin, 19 ... (2)
Bergamini, Ariel (2)
Biurrun, Idoia (2)
Dembicz, Iwona (2)
Gillet, François (2)
Kozub, Łukasz (2)
Marcenò, Corrado (2)
Guarino, Riccardo (2)
Axmanová, Irena (2)
Bartha, Sándor (2)
Conradi, Timo (2)
Filibeck, Goffredo (2)
Jiménez-Alfaro, Borj ... (2)
Kuzemko, Anna (2)
Molnár, Zsolt (2)
Roleček, Jan (2)
Sutcliffe, Laura M. ... (2)
Terzi, Massimo (2)
Winkler, Manuela (2)
Aćić, Svetlana (2)
Akasaka, Munemitsu (2)
Apostolova, Iva (2)
Baumann, Esther (2)
Belonovskaya, Elena (2)
Benito Alonso, José ... (2)
Berastegi, Asun (2)
visa färre...
Lärosäte
Lunds universitet (26)
Uppsala universitet (4)
Stockholms universitet (3)
Högskolan i Gävle (3)
Södertörns högskola (2)
Högskolan i Halmstad (1)
visa fler...
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy