SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reitzner Stefan M.) "

Sökning: WFRF:(Reitzner Stefan M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chapman, Mark A., et al. (författare)
  • Skeletal Muscle Transcriptomic Comparison between Long-Term Trained and Untrained Men and Women
  • 2020
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 31:12
  • Tidskriftsartikel (refereegranskat)abstract
    • To better understand the health benefits of lifelong exercise in humans, we conduct global skeletal muscle transcriptomic analyses of long-term endurance- (9 men, 9 women) and strength-trained (7 men) humans compared with age-matched untrained controls (7 men, 8 women). Transcriptomic analysis, Gene Ontology, and genome-scale metabolic modeling demonstrate changes in pathways related to the prevention of metabolic diseases, particularly with endurance training. Our data also show prominent sex differences between controls and that these differences are reduced with endurance training. Additionally, we compare our data with studies examining muscle gene expression before and after a months-long training period in individuals with metabolic diseases, This analysis reveals that training shifts gene expression in individuals with impaired metabolism to become more similar to our endurance-trained group. Overall, our data provide an extensive examination of the accumulated transcriptional changes that occur with decades-long training and identify important "exercise-responsive" genes that could attenuate metabolic disease.
  •  
2.
  • Emanuelsson, Eric B., et al. (författare)
  • MRI characterization of skeletal muscle size and fatty infiltration in long--term trained and untrained individuals
  • 2022
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 54:9, s. 389-389
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated body composition measures in highly trained and untrained individuals using whole--body magnetic resonance imaging (MRI). Additionally, correlations between these measures and skeletal muscle gene expression were performed. Thirty-six individuals were included: endurance-trained males (ME, n = 8) and females (FE, n = 7), strength-trained males (MS, n = 7), and untrained control males (MC, n = 8) and females (FC, n = 6). MRI scans were performed, and resting M. vastus lateralis (VL) biopsies were subjected to RNA sequencing. Liver fat fraction, visceral adipose tissue volume (VAT), total body fat, and total lean tissue were measured from MRI data. Additionally, cross-sectional area (CSA) and fat signal fraction (FSF) were calculated from Mm. pectoralis, M. erector spinae and M. multifidus combined, Mm. quadriceps, and Mm. triceps surae (TS). Liver fat fraction, VAT, and total body fat relative to body weight were lower in ME and FE compared with corresponding controls. MS had a larger CSA across all four muscle groups and lower FSF in all muscles apart from TS compared with MC. ME had a lower FSF across all muscle groups and a larger CSA in all muscles except TS than MC. FE athletes showed a higher CSA in Mm. pectoralis and Mm. quadriceps and a lower CSA in TS than FC with no CSA differences found in the back muscles investigated. Surprisingly, the only difference in FSF between FE and FC was found in Mm. pectoralis. Lastly, correlations between VL gene expression and VL CSA as well as FSF showed that genes positively correlated with CSA revealed an enrichment of the oxidative phosphorylation and thermogenesis pathways, while the genes positively correlated with FSF showed significant enrichment of the spliceosome pathway. Although limited differences were found with training in females, our study suggests that both regular endurance and resistance training are useful in maintaining muscle mass, reducing adipose tissue deposits, and reducing muscle fat content in males.
  •  
3.
  • Emanuelsson, Eric B., et al. (författare)
  • Remodeling of the human skeletal muscle proteome found after long-term endurance training but not after strength training
  • 2024
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 27:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise training has tremendous systemic tissue-specific health benefits, but the molecular adaptations to long-term exercise training are not completely understood. We investigated the skeletal muscle proteome of highly endurance-trained, strength-trained, and untrained individuals and performed exercise- and sex-specific analyses. Of the 6,000+ proteins identified, >650 were differentially expressed in endurance-trained individuals compared with controls. Strikingly, 92% of the shared proteins with higher expression in both the male and female endurance groups were known mitochondrial. In contrast to the findings in endurance-trained individuals, minimal differences were found in strength-trained individuals and between females and males. Lastly, a co-expression network and comparative literature analysis revealed key proteins and pathways related to the health benefits of exercise, which were primarily related to differences in mitochondrial proteins. This network is available as an interactive database resource where investigators can correlate clinical data with global gene and protein expression data for hypothesis generation.
  •  
4.
  • Moberg, Marcus, 1986-, et al. (författare)
  • Exercise Induces Different Molecular Responses in Trained and Untrained Human Muscle.
  • 2020
  • Ingår i: Medicine & Science in Sports & Exercise. - : Wolters Kluwer. - 0195-9131 .- 1530-0315. ; 52:8, s. 1679-1690
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Human skeletal muscle is thought to have heightened sensitivity to exercise stimulus when it has been previously trained (i.e., it possesses "muscle memory"). We investigated whether basal and acute resistance exercise-induced gene expression and cell signaling events are influenced by previous strength training history.METHODS: Accordingly, 19 training naïve women and men completed 10 weeks of unilateral leg strength training, followed by 20 weeks of detraining. Subsequently, an acute resistance exercise session was performed for both legs, with vastus lateralis biopsies taken at rest and 1 h after exercise in both legs (memory and control).RESULTS: The phosphorylation of AMPK and eEF2 was higher in the memory leg than in the control leg at both time points. Post-exercise phosphorylation of 4E-BP1 was higher in the memory leg than in the control leg. The memory leg had lower basal mRNA levels of total PGC1α, and, unlike the control leg, exhibited increases in PGC1α-ex1a transcripts after exercise. In the genes related to myogenesis (SETD3, MYOD1, and MYOG), mRNA levels differed between the memory and the untrained leg; these effects were evident primarily in the male subjects. Expression of the novel gene SPRYD7 was lower in the memory leg at rest and decreased after exercise only in the control leg, but SPRYD7 protein levels were higher in the memory leg.CONCLUSION: In conclusion, several key regulatory genes and proteins involved in muscular adaptations to resistance exercise are influenced by previous training history. Although the relevance and mechanistic explanation for these findings need further investigation, they support the view of a molecular muscle memory in response to training.
  •  
5.
  • Reitzner, Stefan M., et al. (författare)
  • Molecular profiling of high-level athlete skeletal muscle after acute endurance or resistance exercise : A systems biology approach
  • 2024
  • Ingår i: Molecular Metabolism. - : Elsevier GmbH. - 2212-8778. ; 79
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Long-term high-level exercise training leads to improvements in physical performance and multi-tissue adaptation following changes in molecular pathways. While skeletal muscle baseline differences between exercise-trained and untrained individuals have been previously investigated, it remains unclear how training history influences human multi-omics responses to acute exercise. Methods: We recruited and extensively characterized 24 individuals categorized as endurance athletes with >15 years of training history, strength athletes or control subjects. Timeseries skeletal muscle biopsies were taken from M. vastus lateralis at three time-points after endurance or resistance exercise was performed and multi-omics molecular analysis performed. Results: Our analyses revealed distinct activation differences of molecular processes such as fatty- and amino acid metabolism and transcription factors such as HIF1A and the MYF-family. We show that endurance athletes have an increased abundance of carnitine-derivates while strength athletes increase specific phospholipid metabolites compared to control subjects. Additionally, for the first time, we show the metabolite sorbitol to be substantially increased with acute exercise. On transcriptional level, we show that acute resistance exercise stimulates more gene expression than acute endurance exercise. This follows a specific pattern, with endurance athletes uniquely down-regulating pathways related to mitochondria, translation and ribosomes. Finally, both forms of exercise training specialize in diverging transcriptional directions, differentiating themselves from the transcriptome of the untrained control group. Conclusions: We identify a “transcriptional specialization effect” by transcriptional narrowing and intensification, and molecular specialization effects on metabolomic level Additionally, we performed multi-omics network and cluster analysis, providing a novel resource of skeletal muscle transcriptomic and metabolomic profiling in highly trained and untrained individuals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy