SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rellstab Christian) "

Sökning: WFRF:(Rellstab Christian)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benavides, Raquel, et al. (författare)
  • The GenTree Leaf Collection : Inter- and intraspecific leaf variation in seven forest tree species in Europe
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : John Wiley & Sons. - 1466-822X .- 1466-8238. ; 30:3, s. 590-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Trait variation within species can reveal plastic and/or genetic responses to environmental gradients, and may indicate where local adaptation has occurred. Here, we present a dataset of rangewide variation in leaf traits from seven of the most ecologically and economically important tree species in Europe. Sample collection and trait assessment are embedded in the GenTree project (EU-Horizon 2020), which aims at characterizing the genetic and phenotypic variability of forest tree species to optimize the management and sustainable use of forest genetic resources. Our dataset captures substantial intra- and interspecific leaf phenotypic variability, and provides valuable information for studying the relationship between ecosystem functioning and trait variability of individuals, and the response and resilience of species to environmental changes. Main types of variable contained We chose morphological and chemical characters linked to trade-offs between acquisition and conservation of resources and water use, namely specific leaf area, leaf size, carbon and nitrogen content and their ratio, and the isotopic signature of stable isotope C-13 and N-15 in leaves. Spatial location and grain We surveyed between 18 and 22 populations per species, 141 in total, across Europe. Time period Leaf sampling took place between 2016 and 2017. Major taxa and level of measurement We sampled at least 25 individuals in each population, 3,569 trees in total, and measured traits in 35,755 leaves from seven European tree species, i.e. the conifers Picea abies, Pinus pinaster and Pinus sylvestris, and the broadleaves Betula pendula, Fagus sylvatica, Populus nigra and Quercus petraea. Software format The data files are in ASCII text, tab delimited, not compressed.
  •  
2.
  • Fady, Bruno, et al. (författare)
  • Genetics to the rescue : managing forests sustainably in a changing world
  • 2020
  • Ingår i: Tree Genetics & Genomes. - : SPRINGER HEIDELBERG. - 1614-2942 .- 1614-2950. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing concern that the implementation of political agreements on climate change and biodiversity will not be enough to protect forests in the short run and up to the end of the 21st century. As mitigation efforts are lagging behind self-imposed, reasonable targets, genetic diversity will have a large and significant part to play in the process of adapting forests to climate change. Genetic diversity, the raw material of evolution, can be used for adaptation by natural selection and artificial breeding, in naturally regenerated and plantation forests alike. The 2-day scientific conference: "#rescueforests: Genetics to the rescue - Managing forests sustainably in a changing world," addressed the genetic diversity of forests. More specifically, the conference was about natural as well as assisted adaptive processes, their spatial scale, from fine grain to landscape and ecoregions, and how much of the genome it involves. It also dealt with phenotypes and how much of their variation is determined by underlying genetic diversity. And finally, and perhaps most importantly, the conference emphasized the importance of conservation and sustainable use of this genetic diversity as a nature-based solution to adapt under the fast pace of climate change. The conference demonstrated how improved knowledge on genomic diversity and evolutionary mechanisms can help to rescue forests, either naturally or by means of management.
  •  
3.
  • Martinez-Sancho, Elisabet, et al. (författare)
  • The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe
  • 2020
  • Ingår i: Scientific Data. - : NATURE PUBLISHING GROUP. - 2052-4463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.
  •  
4.
  • Neophytou, Charalambos, et al. (författare)
  • Genomics and adaptation in forest ecosystems
  • 2022
  • Ingår i: Tree Genetics & Genomes. - : Springer Nature. - 1614-2942 .- 1614-2950. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid human-induced environmental changes like climate warming represent a challenge for forest ecosystems. Due to their biological complexity and the long generation time of their keystone tree species, genetic adaptation in these ecosystems might not be fast enough to keep track with conditions changing at such a fast pace. The study of adaptation to environmental change and its genetic mechanisms is therefore key for ensuring a sustainable support and management of forests. The 4-day conference of the European Research Group EvolTree (https://www.evoltree.eu) on the topic of "Genomics and Adaptation in Forest Ecosystems" brought together over 130 scientists to present and discuss the latest developments and findings in forest evolutionary research. Genomic studies in forest trees have long been hampered by the lack of high-quality genomics resources and affordable genotyping methods. This has dramatically changed in the last few years; the conference impressively showed how such tools are now being applied to study past demography, adaptation and interactions with associated organisms. Moreover, genomic studies are now finally also entering the world of conservation and forest management, for example by measuring the value or cost of interspecific hybridization and introgression, assessing the vulnerability of species and populations to future change, or accurately delineating evolutionary significant units. The newly launched conference series of EvolTree will hopefully play a key role in the exchange and synthesis of such important investigations.
  •  
5.
  • Opgenoorth, Lars, et al. (författare)
  • The GenTree Platform : growth traits and tree-level environmental data in 12 European forest tree species
  • 2021
  • Ingår i: GigaScience. - : Oxford University Press. - 2047-217X. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information.Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species' geographic ranges and reflecting local environmental gradients.Conclusion: The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy