SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renaud Florent) "

Sökning: WFRF:(Renaud Florent)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agertz, Oscar, et al. (författare)
  • Vintergatan - i. The origins of chemically, kinematically, and structurally distinct discs in a simulated milky way-mass galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:4, s. 5826-5845
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectroscopic surveys of the Milky Way's stars have revealed spatial, chemical, and kinematical structures that encode its history. In this work, we study their origins using a cosmological zoom simulation, VINTERGATAN, of a MilkyWay-mass disc galaxy. We find that in connection to the last major merger at z ∼ 1.5, cosmological accretion leads to the rapid formation of an outer, metal-poor, low-[α/Fe] gas disc around the inner, metal-rich galaxy containing the old high-[α/Fe] stars. This event leads to a bimodality in [α/Fe] over a range of [Fe/H]. A detailed analysis of how the galaxy evolves since z ∼ 1 is presented. We demonstrate the way in which inside-out growth shapes the radial surface density and metallicity profile and how radial migration preferentially relocates stars from the inner disc to the outer disc. Secular disc heating is found to give rise to increasing velocity dispersions and scale heights with stellar age, which together with disc flaring explains several trends observed in the MilkyWay, including shallower radial [Fe/H] profiles above the mid-plane.We show how the galaxy formation scenario imprints non-trivial mappings between structural associations (i.e. thick and thin discs), velocity dispersions, α-enhancements, and ages of stars; e.g. the most metal-poor stars in the low-[α/Fe] sequence are found to have a scale height comparable to old high-[α/Fe] stars. Finally, we illustrate how at low spatial resolution, comparable to the thickness of the galaxy, the proposed pathway to distinct sequences in [α/Fe]-[Fe/H] cannot be captured.
  •  
2.
  • Andersson, Eric P., et al. (författare)
  • INFERNO : Galactic winds in dwarf galaxies with star-by-star simulations including runaway stars
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:2, s. 2196-2214
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation and evolution of galaxies have proved sensitive to the inclusion of stellar feedback, which is therefore crucial to any successful galaxy model. We present INFERNO, a new model for hydrodynamic simulations of galaxies, which incorporates resolved stellar objects with star-by-star calculations of when and where the injection of enriched material, momentum, and energy takes place. INFERNO treats early stellar kinematics to include phenomena such as walkaway and runaway stars. We employ this innovative model on simulations of a dwarf galaxy and demonstrate that our physically motivated stellar feedback model can drive vigorous galactic winds. This is quantified by mass and metal loading factors in the range of 10–100, and an energy loading factor close to unity. Outflows are established close to the disc, are highly multiphase, spanning almost 8 orders of magnitude in temperature, and with a clear dichotomy between mass ejected in cold, slow-moving (T ≲ 5 × 104 K, v < 100 km s-1) gas and energy ejected in hot, fast-moving (T > 106 K, v > 100 km s-1) gas. In contrast to massive disc galaxies, we find a surprisingly weak impact of the early stellar kinematics, with runaway stars having little to no effect on our results, despite exploding in diffuse gas outside the dense star-forming gas, as well as outside the galactic disc entirely. We demonstrate that this weak impact in dwarf galaxies stems from a combination of strong feedback and a porous interstellar medium, which obscure any unique signatures that runaway stars provide.
  •  
3.
  • Andersson, Eric P., et al. (författare)
  • Pre-supernova feedback sets the star cluster mass function to a power law and reduces the cluster formation efficiency
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The star cluster initial mass function is observed to have an inverse power law exponent around 2, yet there is no consensus on what determines this distribution, and why some variation is observed in different galaxies. Furthermore, the cluster formation efficiency (CFE) covers a range of values, particularly when considering different environments. These clusters are often used to empirically constrain star formation and as fundamental units for stellar feedback models. Detailed galaxy models must therefore accurately capture the basic properties of observed clusters to be considered predictive. Aims. We study how feedback mechanisms acting on different timescales and with different energy budgets affect the star cluster mass function and CFE. Methods. We use hydrodynamical simulations of a dwarf galaxy as a laboratory to study star cluster formation. We test different combinations of stellar feedback mechanisms, including stellar winds, ionizing radiation, and supernovae (SNe). Results. Each feedback mechanism affects the CFE and cluster mass function. Increasing the feedback budget by combining the different types of feedback decreases the CFE by reducing the number of massive clusters. Ionizing radiation is found to be especially influential. This effect depends on the timing of feedback initiation, as shown by comparing early and late feedback. Early feedback occurs from ionizing radiation and stellar winds with onset immediately after a massive star is formed. Late feedback occurs when energy injection only starts after the main-sequence lifetime of the most massive SN progenitor, a timing that is further influenced by the choice of the most massive SN progenitor. Late feedback alone results in a broad, flat mass function, approaching a log-normal shape in the complete absence of feedback. Early feedback, on the other hand, produces a power-law cluster mass function with lower CFE, albeit with a steeper slope than that usually observed.
  •  
4.
  • Andersson, Eric P., et al. (författare)
  • Runaway stars masquerading as star formation in galactic outskirts
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society: Letters. - : Oxford University Press (OUP). - 1745-3925 .- 1745-3933. ; 502:1, s. 29-34
  • Tidskriftsartikel (refereegranskat)abstract
    • In the outskirts of nearby spiral galaxies, star formation is observed in extremely low gas surface densities. Star formation in these regions, where the interstellar medium is dominated by diffuse atomic hydrogen, is difficult to explain with classic star formation theories. In this letter, we introduce runaway stars as an explanation for this observation. Runaway stars, produced by collisional dynamics in young stellar clusters, can travel kiloparsecs during their main-sequence lifetime. Using galactic-scale hydrodynamic simulations including a treatment of individual stars, we demonstrate that this mechanism enables the ejection of young massive stars into environments where the gas is not dense enough to trigger star formation. This results in the appearance of star formation in regions where it ought to be impossible. We conclude that runaway stars are a contributing, if not dominant, factor to the observations of star formation in the outskirts of spiral galaxies.
  •  
5.
  • Bílek, Michal, et al. (författare)
  • The galactic acceleration scale is imprinted on globular cluster systems of early-type galaxies of most masses and on red and blue globular cluster subpopulations
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Globular clusters (GCs) carry information about the formation histories and gravitational fields of their host galaxies. It was found before that the radial profiles of the volume number density of GCs in GC systems (GCSs) follow broken power laws, while the breaks occur approximately at the a0 radii. These are the radii at which the gravitational fields of the galaxies equal the galactic acceleration scale a0 = 1.2 × 10-10 ms-2 known from the radial acceleration relation or the MOND theory of modified dynamics. Aims. Our main goals here are to explore whether the above results hold true for galaxies of a wider mass range and for the red and blue GC subpopulations. Methods. We exploited catalogs of photometric GC candidates in the Fornax galaxy cluster based on ground and space observations and a new catalog of spectroscopic GCs of NGC1399, the central galaxy of the cluster. For every galaxy, we obtained the parameters of the broken power-law density by fitting the on-sky distribution of the GC candidates, while allowing for a constant density of contaminants. The logarithmic stellar masses of our galaxy sample span 8.0-11.4 M⊙. Results. All investigated GCSs with a suficient number of members show broken power-law density profiles. This holds true for the total GC population and the blue and red subpopulations. The inner and outer slopes and the break radii agree well for the different GC populations. The break radii agree with the a0 radii typically within a factor of two for all GC color subpopulations. The outer slopes correlate better with the a0 radii than with the galactic stellar masses. The break radii of NGC1399 vary in azimuth, such that they are greater toward and against the direction to NGC1404, which tidally interacts with NGC1399.
  •  
6.
  • Della Bruna, Lorenza, et al. (författare)
  • Stellar feedback in M 83 as observed with MUSE II. Analysis of the H II region population : Ionisation budget and pre-SN feedback
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Energy and momentum injected by young, massive stars into the surrounding gas play an important role in regulating further star formation and in determining the galaxy's global properties. Before supernovae begin to explode, stellar feedback consists of two main processes: radiation pressure and photoionisation.Aims. We study pre-supernova feedback and constrain the leakage of Lyman continuum (LyC) radiation in a sample of similar to 4700 H II regions in the nearby spiral galaxy M 83. We explore the impact that the galactic environment and intrinsic physical properties (metallicity, extinction, and stellar content) have on the early phases of H II region evolution.Methods. We combined VLT/MUSE observations of the ionised gas with young star cluster physical properties derived from HST multiwavelength data. We identified H II regions based on their Hα emission, and cross-matched the sample with planetary nebulae and supernova remnants to assess contaminant sources and identify evolved H II regions. We also spectroscopically identified Wolf-Rayet (WR) stars populating the star-forming regions. We estimated the physical properties of the H II regions (luminosity, size, oxygen abundance, and electron density). For each H II region, we computed the pressure of ionised gas (Pion) and the direct radiation pressure (Pdir) acting in the region, and investigated how they vary with galactocentric distance, with the physical properties of the region, and with the pressure of the galactic environment (PDE). For a subset of similar to 500 regions, we also investigated the link between the pressure terms and the properties of the cluster population (age, mass, and LyC flux). By comparing the LyC flux derived from Hα emission with the one modelled from their clusters and WRs, we furthermore constrained any escape of LyC radiation (fesc).Results. We find that Pion dominates over Pdir by at least a factor of 10 on average over the disk. Both pressure terms are strongly enhanced and become almost comparable in the central starburst region. In the disk (R ≥ 0.15Re), we observe that Pdir stays approximately constant with galactocentric distance. We note that Pdir is positively correlated with an increase in radiation field strength (linked to the negative metallicity gradient in the galaxy), while it decreases in low extinction regions, as is expected if the amount of dust to which the momentum can be imparted decreases. In addition, Pion decreases constantly for increasing galactocentric distances; this trend correlates with the decrease in extinction - indicative of more evolved and thus less compact regions - and with changes in the galactic environment (traced by a decrease in PDE). In general, we observe that H II regions near the centre are underpressured with respect to their surroundings, whereas regions in the rest of the disk are overpressured and hence expanding. We find that regions hosting younger clusters or those that have more mass in young star clusters have a higher internal pressure, indicating that clustered star formation likely plays a dominant role in setting the pressure. Finally, we estimate that only 13% of H II regions hosting young clusters and WR stars have fesc ≥ 0, which suggests that star formation taking place outside young clusters makes a non-negligible contribution to ionising H II regions.
  •  
7.
  •  
8.
  • Della Bruna, Lorenza, et al. (författare)
  • Stellar feedback in M83 as observed with MUSE I. Overview, an unprecedented view of the stellar and gas kinematics and evidence of outflowing gas
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young massive stars inject energy and momentum into the surrounding gas, creating a multi-phase interstellar medium (ISM) and regulating further star formation. The main challenge of studying stellar feedback proves to be the variety of scales spanned by this phenomenon, ranging from the immediate surrounding of the stars (H II regions, 10s pc scales) to galactic-wide kiloparsec scales.Aims. We present a large mosaic (3.8 × 3.8 kpc) of the nearby spiral galaxy M83, obtained with the MUSE instrument at ESO Very Large Telescope. The integral field spectroscopy data cover a large portion of the optical disk at a resolution of ∼20 pc, allowing the characterisation of single H II regions while sampling diverse dynamical regions in the galaxy.Methods. We obtained the kinematics of the stars and ionised gas, and compared them with molecular gas kinematics observed in CO(2-1) with the ALMA telescope array. We separated the ionised gas into H II regions and diffuse ionised gas (DIG) and investigated how the fraction of Hα luminosity originating from the DIG (fDIG) varies with galactic radius.Results. We observe that both stars and gas trace the galactic disk rotation, as well as a fast-rotating nuclear component (30″ ≃ 700 pc in diameter), likely connected to secular processes driven by the galactic bar. In the gas kinematics, we observe a stream east of the nucleus (50″ ≃ 1250 pc in size), redshifted with respect to the disk. The stream is surrounded by an extended ionised gas region (1000 × 1600 pc) with enhanced velocity dispersion and a high ionisation state, which is largely consistent with being ionised by slow shocks. We interpret this feature as either the superposition of the disk and an extraplanar layer of DIG, or as a bar-driven inflow of shocked gas. A double Gaussian component fit to the Hα line also reveals the presence of a nuclear biconic structure whose axis of symmetry is perpendicular to the bar. The two cones (20″ ≃ 500 pc in size) appear blue- and redshifted along the line of sight. The cones stand out for having an Hα emission separated by up to 200 km s−1 from that of the disk, and a high velocity dispersion ∼80–200 km s−1. At the far end of the cones, we observe that the gas is consistent with being ionised by shocks. These features had never been observed before in M83; we postulate that they are tracing a starburst-driven outflow shocking into the surrounding ISM. Finally, we obtain fDIG ∼ 13% in our field of view, and observe that the DIG contribution varies radially between 0.8 and 46%, peaking in the interarm region. We inspect the emission of the H II regions and DIG in ‘BPT’ diagrams, finding that in H II regions photoionisation accounts for 99.8% of the Hα flux, whereas the DIG has a mixed contribution from photoionisation (94.9%) and shocks (5.1%).
  •  
9.
  • Duc, Pierre-Alain, et al. (författare)
  • Revisiting Stephan's Quintet with deep optical images
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society: Letters. - : Oxford University Press (OUP). - 1745-3925 .- 1745-3933. ; 475:1, s. 40-44
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  • Ejdetjärn, Timmy, et al. (författare)
  • From giant clumps to clouds - III. The connection between star formation and turbulence in the ISM
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:1, s. 480-496
  • Tidskriftsartikel (refereegranskat)abstract
    • Supersonic gas turbulence is a ubiquitous property of the interstellar medium. The level of turbulence, quantified by the gas velocity dispersion (sigma(g)), is observed to increase with the star formation rate (SFR) of a galaxy, but it is yet not established whether this trend is driven by stellar feedback or gravitational instabilities. In this work, we carry out hydrodynamical simulations of entire disc galaxies, with different gas fractions, to understand the origins of the SFR-sigma(g) relation. We show that disc galaxies reach the same levels of turbulence regardless of the presence of stellar feedback processes, and argue that this is an outcome of the way disc galaxies regulate their gravitational stability. The simulations match the SFR-sigma(g) relation up to SFRs of the order of tens of M-circle dot yr(-1) and sigma(g) similar to 50 km s(-1) in neutral hydrogen and molecular gas, but fail to reach the very large values (> 100 km s(-1)) reported in the literature for rapidly star-forming galaxies. We demonstrate that such high values of sigma(g) can be explained by ( 1) insufficient beam smearing corrections in observations and (2) stellar feedback being coupled to the ionized gas phase traced by recombination lines. Given that the observed SFR-sigma(g) relation is composed of highly heterogeneous data, with sigma(g) at high SFRs almost exclusively being derived from H alpha observations of high-redshift galaxies with complex morphologies, we caution against analytical models that attempt to explain the SFR-sigma(g) relation without accounting for these effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (38)
annan publikation (1)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Renaud, Florent (35)
Agertz, Oscar (20)
Romeo, Alessandro, 1 ... (7)
Andersson, Eric P. (5)
Emsellem, Eric (4)
Read, Justin I. (4)
visa fler...
Rey, Martin P. (4)
Duc, Pierre-Alain (4)
Östlin, Göran (3)
Usher, Christopher (3)
Grisdale, Kearn (3)
Pontzen, Andrew (3)
Linares, Mathieu (3)
Bik, Arjan (3)
Di Meo, Florent (3)
Smith, Linda J. (3)
Della Bruna, Lorenza (3)
McLeod, Anna F. (3)
Robert, Carmelle (3)
Amram, Philippe (3)
Blair, William P. (3)
Rosolowsky, Erik (3)
Sguerra, Fabien (3)
Lohier, Jean-Francoi ... (3)
Renaud, Jean-Luc (3)
Hamel, Matthieu (3)
Gaillard, Sylvain (3)
aut (2)
Boquien, Mederic (2)
Adamo, Angela, 1981- (2)
Feuillet, Diane K. (2)
Segovia Otero, Alvar ... (2)
Sirressi, Mattia (2)
Schinnerer, Eva (2)
de Grijs, Richard (2)
Lelli, Federico (2)
Sun, Jiayi (2)
Schruba, Andreas (2)
Leroy, Adam (2)
Rousseau-Nepton, Lau ... (2)
Ejdetjärn, Timmy (2)
Elie, Margaux (2)
Weber, Michael D. (2)
Marion, Ronan (2)
Pansu, Robert B. (2)
Costa, Ruben D. (2)
Elmegreen, Bruce G. (2)
Fensch, Jeremy (2)
Elmegreen, Debra M. (2)
visa färre...
Lärosäte
Lunds universitet (32)
Chalmers tekniska högskola (7)
Stockholms universitet (6)
Linköpings universitet (2)
Kungliga Tekniska Högskolan (1)
Naturhistoriska riksmuseet (1)
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy