SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Renna P) "

Search: WFRF:(Renna P)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Parati, G, et al. (author)
  • MASked-unconTrolled hypERtension management based on office BP or on ambulatory blood pressure measurement (MASTER) Study: a randomised controlled trial protocol
  • 2018
  • In: BMJ open. - : BMJ. - 2044-6055. ; 8:12, s. e021038-
  • Journal article (peer-reviewed)abstract
    • Masked uncontrolled hypertension (MUCH) carries an increased risk of cardiovascular (CV) complications and can be identified through combined use of office (O) and ambulatory (A) blood pressure (BP) monitoring (M) in treated patients. However, it is still debated whether the information carried by ABPM should be considered for MUCH management. Aim of the MASked-unconTrolled hypERtension management based on OBP or on ambulatory blood pressure measurement (MASTER) Study is to assess the impact on outcome of MUCH management based on OBPM or ABPM.Methods and analysisMASTER is a 4-year prospective, randomised, open-label, blinded-endpoint investigation. A total of 1240 treated hypertensive patients from about 40 secondary care clinical centres worldwide will be included -upon confirming presence of MUCH (repeated on treatment OBP <140/90 mm Hg, and at least one of the following: daytime ABP ≥135/85 mm Hg; night-time ABP ≥120/70 mm Hg; 24 hour ABP ≥130/80 mm Hg), and will be randomised to a management strategy based on OBPM (group 1) or on ABPM (group 2). Patients in group 1 will have OBP measured at 0, 3, 6, 12, 18, 24, 30, 36, 42 and 48 months and taken as a guide for treatment; ABPM will be performed at randomisation and at 12, 24, 36 and 48 months but will not be used to take treatment decisions. Patients randomised to group 2 will have ABPM performed at randomisation and all scheduled visits as a guide to antihypertensive treatment. The effects of MUCH management strategy based on ABPM or on OBPM on CV and renal intermediate outcomes (changing left ventricular mass and microalbuminuria, coprimary outcomes) at 1 year and on CV events at 4 years and on changes in BP-related variables will be assessed.Ethics and disseminationMASTER study protocol has received approval by the ethical review board of Istituto Auxologico Italiano. The procedures set out in this protocol are in accordance with principles of Declaration of Helsinki and Good Clinical Practice guidelines. Results will be published in accordance with the CONSORT statement in a peer-reviewed scientific journal.Trial registration numberNCT02804074; Pre-results.
  •  
3.
  • Charchar, Fadi J., et al. (author)
  • Lifestyle management of hypertension : International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension
  • 2024
  • In: Journal of Hypertension. - : Wolters Kluwer. - 0263-6352 .- 1473-5598. ; 42:1, s. 23-49
  • Journal article (peer-reviewed)abstract
    • Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools.
  •  
4.
  •  
5.
  •  
6.
  • Pastore, F, et al. (author)
  • A Bioengineering Strategy to Control ADAM10 Activity in Living Cells
  • 2023
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 24:2
  • Journal article (peer-reviewed)abstract
    • A Disintegrin and Metalloprotease 10, also known as ADAM10, is a cell surface protease ubiquitously expressed in mammalian cells where it cuts several membrane proteins implicated in multiple physiological processes. The dysregulation of ADAM10 expression and function has been implicated in pathological conditions, including Alzheimer’s disease (AD). Although it has been suggested that ADAM10 is expressed as a zymogen and the removal of the prodomain results in its activation, other potential mechanisms for the ADAM10 proteolytic function and activation remain unclear. Another suggested mechanism is post-translational modification of the cytoplasmic domain, which regulates ADAM10-dependent protein ectodomain shedding. Therefore, the precise and temporal activation of ADAM10 is highly desirable to reveal the fine details of ADAM10-mediated cleavage mechanisms and protease-dependent therapeutic applications. Here, we present a strategy to control prodomain and cytosolic tail cleavage to regulate ADAM10 shedding activity without the intervention of small endogenous molecule signaling pathways. We generated a series of engineered ADAM10 analogs containing Tobacco Etch Virus protease (TEV) cleavage site (TEVcs), rendering ADAM10 cleavable by TEV. This strategy revealed that, in the absence of other stimuli, the TEV-mediated removal of the prodomain could not activate ADAM10. However, the TEV-mediated cleavage of the cytosolic domain significantly increased ADAM10 activity. Then, we generated ADAM10 with a minimal constitutively catalytic activity that increased significantly in the presence of TEV or after activating a chemically activatable TEV. Our results revealed a bioengineering strategy for controlling the ADAM10 activity in living cells, paving the way to obtain spatiotemporal control of ADAM10. Finally, we proved that our approach of controlling ADAM10 promoted α-secretase activity and the non-amyloidogenic cleavage of amyloid-β precursor protein (APP), thereby increasing the production of the neuroprotective soluble ectodomain (sAPPα). Our bioengineering strategy has the potential to be exploited as a next-generation gene therapy for AD.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view