SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renneckar Scott) "

Sökning: WFRF:(Renneckar Scott)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asta, Nadia (författare)
  • Fundamentals of Interactions between Cellulose Materials and its Implications on Properties of Fibrous Networks
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Fundamental research plays a pivotal role in the development of sustainable solutions that benefit both our environment and everyday lives. Cellulose, as an abundant and renewable resource, holds immense potential for sustainable applications. However, navigating the complexities of molecular and supramolecular structure of cellulose poses significant challenges in harnessing its full potential. By delving into fundamental research, we aim to uncover the underlying mechanisms governing cellulose interactions, paving the way for innovative advancements in sustainable material development.This thesis uncovers the intricate relationship between fundamental research and applied methodologies by showing how molecular contact and structure at the interface of cellulose-rich materials will control the development of the macroscopic mechanical properties of networks from cellulose-rich fibres. The study encompasses various facets, ranging from the development of model materials for studying interfacial interactions to the preparation of fibrous networks with tailored properties.In the initial part of the work the research delves into the development of model materials to investigate interactions at smooth interfaces of regenerated cellulose. The study reveals the crucial role of the making and breaking of cellulose interface, or sometimes interphase, in the development of adhesive joints. Experimental findings demonstrate how chemical additives influence the interactions between cellulose surfaces, thereby modulating the structural and adhesive properties at the interface. Furthermore, by utilizing model materials, insights are gained into fibre-fibre interactions and the influence of surface treatments on network formation and mechanical performance. Lastly, the research focused on investigating the preparation of fibrous networks at different densities and amount of adsorbed additives, providing a comprehensive understanding of how network density and composition affect mechanical properties of the networks.This work not only exemplifies a synergistic approach, where fundamental insights into molecular contacts and interface structures are translated into practical applications for enhancing macroscopic properties but also highlights the importance of integrating fundamental and applied methodologies in molecular engineering, offering novel strategies for advancing sustainable paper production practices and contributing to the attainment of sustainable development goals.
  •  
2.
  •  
3.
  • Liu, Liyang, 1990-, et al. (författare)
  • Solventless Amination of Lignin and Natural Phenolics using 2-Oxazolidinone
  • 2023
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 16:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive amine compounds are critical for a vast array of useful chemicals in society, yet a limited number of them are derived from renewable resources. This study developed an efficient route to obtain aminated building blocks from phenolic resources derived from nature, such as lignin and tannic acid, for enhancing their utility in applications such as epoxy resins, nylons, polyurethanes, and other polymeric materials. The reaction utilized a carbon storage compound, 2-oxazolidinone as a solvent and as a reagent circumventing the need of hazardous chemistry of conventional amination routes such as those involving formaldehyde. Both free acids and hindered phenolics were readily converted into aminoethyl derivatives resulting in aromatics with primary amine functionality. The aminated compounds, with the potential for enhanced reactivity, can pave the way toward more advanced renewable building blocks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy