SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renzini A.) "

Sökning: WFRF:(Renzini A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cirasuolo, M., et al. (författare)
  • MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147, s. 91470-91470
  • Konferensbidrag (refereegranskat)abstract
    • MOONS (the Multi-Object Optical and Near-infrared Spectrograph) has been selected by ESO as a third-generation instrument for the Very Large Telescope (VLT). The light grasp of the large collecting area offered by the VLT (8.2m diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8 -1.8 mu m) of MOONS will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of Galactic, extragalactic and cosmological studies, and it will provide crucial follow-up for major facilities such as Gaia, VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very first galaxies and reionization of the Universe at redshifts of z > 8-9, just a few million years after the Big Bang. From five years of observations MOONS will provide high-quality spectra for > 3M stars in our Galaxy and the Local Group, and for 1-2M galaxies at z > 1 (for an SDSS-like survey), promising to revolutionize our understanding of the Universe. The baseline design consists of similar to 1000 fibres, deployable over a field-of-view of similar to 500 arcmin(2), the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8 -1.8 mu m with two spectral resolving powers: in the medium-resolution mode (R similar to 4,000-6,000) the entire wavelength range is observed simultaneously, while the high-resolution mode will cover three selected sub-regions simultaneously: one region with R similar to 8,000 near the Ca II triplet to measure stellar radial velocities, and two regions at R similar to 20,000 (one in each of the J- and H-bands), for precision measurements of chemical abundances.
  •  
2.
  • Marino, A. F., et al. (författare)
  • A JWST Project on 47 Tucanae. Overview, Photometry, and Early Spectroscopic Results of M Dwarfs and Observations of Brown Dwarfs
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 965:2
  • Tidskriftsartikel (refereegranskat)abstract
    • James Webb Space Telescope (JWST) observations have been demonstrated to be efficient in detecting multiple stellar populations in globular clusters (GCs) in the low-mass regime of M dwarfs. We present an overview, and first results, of different projects that can be explored by using the JWST observations gathered under program GO2560 for 47 Tucanae, the first program entirely devoted to the investigation of multiple populations in very-low-mass stars, which includes spectroscopic data for the faintest GC stars for which spectra are available. Our color-magnitude diagram (CMD) shows some substructures for ultracool stars, including gaps and breaks in slope. In particular, we observe both a gap and a minimum in the F322W2 luminosity function less than 1 mag apart, and discuss which it could be associated with the H-burning limit. We detect stars fainter than this minimum, very likely brown dwarfs. We corroborate the ubiquity of the multiple populations across different masses, from ∼ 0.1 M⊙ up to red giants (∼ 0.8 M⊙). The oxygen range inferred for the M dwarfs, both from the CMD and from the spectra of two M dwarfs associated with different populations, is similar to that observed for giants. We have not detected any difference between the fractions of stars in distinct populations across stellar masses greater than or ∼ 0.1 M⊙. This work demonstrates the JWST's capability in uncovering multiple populations within M dwarfs and illustrates the possibility to analyze very-low-mass stars in GCs approaching the H-burning limit and the brown-dwarf sequence.
  •  
3.
  • Mobasher, B., et al. (författare)
  • Photometric redshifts of galaxies in COSMOS
  • 2007
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 172:1, s. 117-131
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometric redshifts for the COSMOS survey derived from a new code, optimized to yield accurate and reliable redshifts and spectral types of galaxies down to faint magnitudes and redshifts out to z similar to 1.2. The technique uses chi (2) template fitting, combined with luminosity function priors and with the option to estimate the internal extinction [ or E( B-V)]. The median most probable redshift, best-fit spectral type and reddening, absolute magnitude, and stellarmass are derived in addition to the full redshift probability distributions. Using simulations with sampling and noise similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios, and the number of bands used. We find from the simulations that the ratio of derived 95% confidence interval in the chi (2) probability distribution to the estimated photometric redshift (D-95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. To evaluate the reliability of the photometric redshifts, we compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z < 1: 2 from zCOSMOS. Considering different scenarios, depending on using prior, no prior, and/or extinction, we compare the photometric and spectroscopic redshifts for this sample. The rms scatter between the estimated photometric redshifts and known spectroscopic redshifts is sigma(Delta( z))= 0. 031, where Delta(z) ( z(phot) - z(spec))/( 1+ z(spec)) with a small fraction of outliers (< 2.5%) [ outliers are defined as objects with Delta( z) > 3 sigma(Delta( z)), where sigma(Delta(z)) is the rms scatter in Delta( z)]. We also find good agreement [sigma(Delta(z))= 0.10] between photometric and spectroscopic redshifts for type II AGNs. We compare results fromour photometric redshift procedure with three other independent codes and find them in excellent agreement. We show preliminary results, based on photometric redshifts for the entire COSMOS sample ( to i < 25 mag).
  •  
4.
  • Ryde, Nils, et al. (författare)
  • Chemical abundances of 11 bulge stars from high-resolution, near-IR spectra
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 509:1, s. A20-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. It is debated whether the Milky Way bulge has characteristics more similar to those of a classical bulge than those of a pseudobulge. Detailed abundance studies of bulge stars are important when investigating the origin, history, and classification of the bulge. These studies provide constraints on the star-formation history, initial mass function, and differences between stellar populations. Not many similar studies have been completed because of the large distance and high variable visual extinction along the line-of-sight towards the bulge. Therefore, near-IR investigations can provide superior results. Aims. To investigate the origin of the bulge and study its chemical abundances determined from near-IR spectra for bulge giants that have already been investigated with optical spectra. The optical spectra also provide the stellar parameters that are very important to the present study. In particular, the important CNO elements are determined more accurately in the near-IR. Oxygen and other alpha elements are important for investigating the star-formation history. The C and N abundances are important for determining the evolutionary stage of the giants and the origin of C in the bulge. Methods. High-resolution, near-infrared spectra in the H band were recorded using the CRIRES spectrometer mounted on the Very Large Telescope. The CNO abundances are determined from the numerous molecular lines in the wavelength range observed. Abundances of the alpha elements Si, S, and Ti are also determined from the near-IR spectra. Results. The abundance ratios [O/Fe], [Si/Fe], and [S/Fe] are enhanced to metallicities of at least [Fe/H] = -0.3, after which they decline. This suggests that the Milky Way bulge experienced a rapid and early burst of star formation similar to that of a classical bulge. However, a similarity between the bulge trend and the trend of the local thick disk seems to be present. This similarity suggests that the bulge could have had a pseudobulge origin. The C and N abundances suggest that our giants are first-ascent red-giants or clump stars, and that the measured oxygen abundances are those with which the stars were born. Our [C/Fe] trend does not show any increase with [Fe/H], which is expected if W-R stars contributed substantially to the C abundances. No "cosmic scatter" can be traced around our observed abundance trends: the measured scatter is expected, given the observational uncertainties.
  •  
5.
  • Talia, M., et al. (författare)
  • ALMA view of a massive spheroid progenitor : a compact rotating core of molecular gas in an AGN host at z=2.226
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 476:3, s. 3956-3963
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ALMA observations at 107.291 GHz (band 3) and 214.532 GHz (band 6) of GMASS 0953, a star-forming galaxy at z = 2.226 hosting an obscured active galactic nucleus (AGN) that has been proposed as a progenitor of compact quiescent galaxies (QGs). We measure for the first time the size of the dust and molecular gas emission of GMASS 0953 that we find to be extremely compact (similar to 1 kpc). This result, coupled with a very high interstellar medium (ISM) density (n similar to 10(5.5) cm(-3)), a low gas mass fraction (similar to 0.2), and a short gas depletion time-scale (similar to 150 Myr), implies that GMASS 0953 is experiencing an episode of intense star formation in its central region that will rapidly exhaust its gas reservoirs, likely aided by AGN-induced feedback, confirming its fate as a compact QG. Kinematic analysis of the CO(6-5) line shows evidence of rapidly rotating gas (V-rot = 320(-53)(+92) km s(-1)), as observed also in a handful of similar sources at the same redshift. On-going quenching mechanisms could either destroy the rotation or leave it intact leading the galaxy to evolve into a rotating QG.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy