SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rezai Jahromi Behnam) "

Sökning: WFRF:(Rezai Jahromi Behnam)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Globisch, Maria A., et al. (författare)
  • Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:20, s. 2154-2169
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
  •  
2.
  • Lazzaroni, Francesca, et al. (författare)
  • Circulating biomarkers in familial cerebral cavernous malformation
  • 2024
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 99
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression.Methods Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n =17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches.Findings Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM.Interpretation Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease.
  •  
3.
  • Rezai Jahromi, Behnam, et al. (författare)
  • Slow-Closing Clip for the Treatment of Nonsaccular Vertebrobasilar Aneurysms : A Retrospective Case Series
  • 2022
  • Ingår i: World Neurosurgery. - : Elsevier. - 1878-8750 .- 1878-8769. ; 168, s. e645-e665
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveVertebrobasilar artery nonsaccular aneurysms (VBANSAs) are associated with a 13% annual mortality. Revascularization and flow diversion are life-saving options in select cases; technical failures and rapid hemodynamic changes may contribute to unwanted outcomes. We describe a technique and report clinical outcomes of patients treated with an experimental slow-closing clip (SCC).MethodsAn experimental SCC was created to gradually close the parent artery of aneurysms. Clinical, radiographic, and outcome data from patients with VBANSAs who underwent experimental treatment with the SCC were retrospectively analyzed.ResultsAmong 10 patients (7 men; mean age, 49.5 years; range, 18–73 years), 6 presented with mass effect symptoms, 1 with ischemic stroke, 2 with subarachnoid hemorrhage, and 1 with hydrocephalus. Five patients underwent revascularization plus SCC application, and 5 were treated with SCC alone. The mean follow-up was 6.7 years. The expected mortality among patients with unruptured VBANSAs with previous treatment options in this period was 52.7%, whereas the observed rate was 20%. Four patients died within 12 months after treatment. Causes of death were brainstem ischemic stroke, poor-grade subarachnoid hemorrhage, poor clinical presentation, and unknown. Six patients were alive at last follow-up, with unchanged or improved modified Rankin Scale scores. Mortality was associated with posterior-projecting aneurysms and late-stage treatment.ConclusionsIn this small case series, use of SCC overcame the natural history of VBANSAs when treatment timing and aneurysm anatomy were suitable. The SCC potentially favors aneurysm thrombosis and collateral reactivation. More studies are necessary to better develop the SCC.
  •  
4.
  • Yau, Anthony C. Y., et al. (författare)
  • Inflammation and neutrophil extracellular traps in cerebral cavernous malformation
  • 2022
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer Nature. - 1420-682X .- 1420-9071. ; 79:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3(iECKO)), we show that endothelial cells from Ccm3(iECKO) mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3(iECKO) mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3(iECKO) mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas of patients with CCM confirms the clinical relevance of NETs in CCM.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy