SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rheinhardt Matthias) "

Sökning: WFRF:(Rheinhardt Matthias)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brandenburg, Axel, et al. (författare)
  • Relic Gravitational Waves from the Chiral Magnetic Effect
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 911:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Relic gravitational waves (GWs) can be produced by primordial magnetic fields. However, not much is known about the resulting GW amplitudes and their dependence on the details of the generation mechanism. Here we treat magnetic field generation through the chiral magnetic effect (CME) as a generic mechanism and explore its dependence on the speed of generation (the product of magnetic diffusivity and characteristic wavenumber) and the speed characterizing the maximum magnetic field strength expected from the CME. When the latter exceeds the former (regime I), which is the regime applicable to the early universe, we obtain an inverse cascade with moderate GW energy that scales with the third power of the magnetic energy. When the generation speed exceeds the CME limit (regime II), the GW energy continues to increase without a corresponding increase of magnetic energy. In the early kinematic phase, the GW energy spectrum (per linear wavenumber interval) has opposite slopes in both regimes and is characterized by an inertial range spectrum in regime I and a white noise spectrum in regime II. The occurrence of these two slopes is shown to be a generic consequence of a nearly monochromatic exponential growth of the magnetic field. The resulting GW energy is found to be proportional to the fifth power of the limiting CME speed and the first power of the generation speed.
  •  
2.
  • Chatterjee, Piyali, et al. (författare)
  • Spontaneous chiral symmetry breaking by hydromagnetic buoyancy
  • 2011
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1539-3755 .- 1550-2376. ; 84:2, s. 25403(R)-
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for the parity-breaking nature of the magnetic buoyancy instability in a stably stratified gas is reported. In the absence of rotation, no helicity is produced, but the nonhelical state is found to be unstable to small helical perturbations during the development of the instability. The parity-breaking nature of this magnetohydrodynamic instability appears to be the first of its kind and has properties similar to those in chiral symmetry breaking in biochemistry. Applications to the production of mean fields in galaxy clusters are discussed.
  •  
3.
  • Hubbard, Alexander, et al. (författare)
  • The fratricide of αΩ dynamos by their α2 siblings
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A48-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Helically forced magneto-hydrodynamic shearing-sheet turbulence can support different large-scale dynamo modes, although the αΩ mode is generally expected to dominate because it is the fastest growing one. In an αΩ dynamo, most of the field amplification is produced by the shear. As differential rotation is an ubiquitous source of shear in astrophysics, such dynamos are believed to be the source of most astrophysical large-scale magnetic fields. Aims: We study the stability of oscillatory migratory αΩ type dynamos in turbulence simulations. Methods: We use shearing-sheet simulations of hydromagnetic turbulence that is helically forced at a wavenumber that is about three times larger than the lowest wavenumber in the domain so that both αΩ and α2 dynamo action is possible. Results: After initial dominance and saturation, the αΩ mode is found to be destroyed by an orthogonal α2 mode sustained by the helical turbulence alone. We show that there are at least two processes through which this transition can occur. Conclusions: The fratricide of αΩ dynamos by its α2 sibling is discussed in the context of grand minima of stellar activity. However, the genesis of αΩ dynamos from an α2 dynamo has not yet been found.
  •  
4.
  • Kaepylae, Petri J., et al. (författare)
  • Extended Subadiabatic Layer in Simulations of Overshooting Convection
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : IOP PUBLISHING LTD. - 2041-8205 .- 2041-8213. ; 845:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper parts of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.
  •  
5.
  • Karak, Bidya Binay, et al. (författare)
  • QUENCHING AND ANISOTROPY OF HYDROMAGNETIC TURBULENT TRANSPORT
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 795:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the alpha effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-fieldmethod, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the alpha effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Omega x J effect nearly the same quenching exponent is obtained as for alpha. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.
  •  
6.
  • Käpylä, Maarit J., et al. (författare)
  • Compressible Test-field Method and Its Application to Shear Dynamos
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 932:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we present a compressible test-field method (CTFM) for computing alpha-effect and turbulent magnetic diffusivity tensors, as well as those relevant for the mean ponderomotive force and mass source, applied to the full MHD equations. We describe the theoretical background of the method and compare it to the quasi-kinematic test-field method and to the previously studied variant working in simplified MHD (SMHD). We present several test cases using velocity and magnetic fields of the Roberts geometry and also compare with the imposed-field method. We show that, for moderate imposed-field strengths, the nonlinear CTFM (nCTFM) gives results in agreement with the imposed-field method. A comparison of different flavors of the nCTFM in the shear dynamo case also yields agreement up to equipartition field strengths. Some deviations between the CTFM and SMHD variants exist. As a relevant physical application, we study nonhelically forced shear flows, which exhibit large-scale dynamo action, and present a reanalysis of low-Reynolds-number, moderate shear systems, where we previously ignored the pressure gradient in the momentum equation and found no coherent shear-current effect. Another key difference is that in the earlier study we used magnetic forcing to mimic small-scale dynamo action, while here it is self-consistently driven by purely kinetic forcing. The kinematic CTFM with general validity forms the core of our analysis. We still find no coherent shear-current effect, but do recover strong large-scale dynamo action that, according to our analysis, is driven by incoherent effects.
  •  
7.
  • Käpylä, Maarit J., et al. (författare)
  • On the Existence of Shear-current Effects in Magnetized Burgulence
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of explaining shear flow dynamos by a magnetic shear-current (MSC) effect is examined via numerical simulations. Our primary diagnostics is the determination of the turbulent magnetic diffusivity tensor eta. In our setup, a negative sign of its component eta(yx) is necessary for coherent dynamo action by the SC effect. To be able to measure turbulent transport coefficients from systems with magnetic background turbulence, we present an extension of the test-field method (TFM) applicable to our setup where the pressure gradient is dropped from the momentum equation: the nonlinear TFM (NLTFM). Our momentum equation is related to Burgers' equation and the resulting flows are referred to as magnetized burgulence. We use both stochastic kinetic and magnetic forcings to mimic cases without and with simultaneous small-scale dynamo action. When we force only kinetically, negative eta(yx) are obtained with exponential growth in both the radial and azimuthal mean magnetic field components. Using magnetokinetic forcing, the field growth is no longer exponential, while NLTFM yields positive eta(yx). By employing an alternative forcing from which wavevectors whose components correspond to the largest scales are removed, the exponential growth is recovered, but the NLTFM results do not change significantly. Analyzing the dynamo excitation conditions for the coherent SC and incoherent alpha and SC effects shows that the incoherent effects are the main drivers of the dynamo in the majority of cases. We find no evidence for MSC-effect-driven dynamos in our simulations.
  •  
8.
  • Pekkila, Johannes, et al. (författare)
  • Scalable communication for high-order stencil computations using CUDA-aware MPI
  • 2022
  • Ingår i: Parallel Computing. - : Elsevier BV. - 0167-8191 .- 1872-7336. ; 111, s. 102904-
  • Tidskriftsartikel (refereegranskat)abstract
    • Modern compute nodes in high-performance computing provide a tremendous level of parallelism and processing power. However, as arithmetic performance has been observed to increase at a faster rate relative to memory and network bandwidths, optimizing data movement has become critical for achieving strong scaling in many communication-heavy applications. This performance gap has been further accentuated with the introduction of graphics processing units, which can provide by multiple factors higher throughput in data-parallel tasks than central processing units. In this work, we explore the computational aspects of iterative stencil loops and implement a generic communication scheme using CUDA-aware MPI, which we use to accelerate magnetohydrodynamics simulations based on high-order finite differences and third-order Runge-Kutta integration. We put particular focus on improving intra-node locality of workloads. Our GPU implementation scales strongly from one to 64 devices at 50%-87% of the expected efficiency based on a theoretical performance model. Compared with a multi-core CPU solver, our implementation exhibits 20-60x speedup and 9-12x improved energy efficiency in compute-bound benchmarks on 16 nodes.
  •  
9.
  • Rheinhardt, Matthias, et al. (författare)
  • Mean-field dynamo action from delayed transport
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 441:1, s. 116-126
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyse the nature of dynamo action that enables growing horizontally averaged magnetic fields in two particular flows that were studied by Roberts in 1972, namely his flows II and III. They have zero kinetic helicity either pointwise (flow II), or on average (flow III). Using direct numerical simulations, we determine the onset conditions for dynamo action at moderate values of the magnetic Reynolds number. Using the test-field method, we show that the turbulent magnetic diffusivity is then positive for both flows. However, we demonstrate that for both flows large-scale dynamo action occurs through delayed transport. Mathematically speaking, the magnetic field at earlier times contributes to the electromotive force through the off-diagonal components of the a tensor such that a zero mean magnetic field becomes unstable to dynamo action. This represents a qualitatively new mean-field dynamo mechanism not previously described.
  •  
10.
  • Rädler, Karl-Heinz, et al. (författare)
  • Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows
  • 2011
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1539-3755 .- 1550-2376. ; 84:4, s. 46321-
  • Tidskriftsartikel (refereegranskat)abstract
    • Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the Péclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to nonlocal and noninstantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy