SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ribbing Jakob) "

Sökning: WFRF:(Ribbing Jakob)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Korell, Julia, et al. (författare)
  • A Model-Based Longitudinal Meta-Analysis of FEV1 in Randomized COPD Trials
  • 2016
  • Ingår i: Clinical Pharmacology and Therapeutics. - : Wiley. - 0009-9236 .- 1532-6535. ; 99:3, s. 315-324
  • Tidskriftsartikel (refereegranskat)abstract
    • A model-based, longitudinal meta-analysis of the efficacy on morning trough forced expiratory volume in 1 second (FEV1) in chronic obstructive pulmonary disease (COPD) is presented. Literature data from 142 randomized maintenance trials were included, comprising 106,422 patients who received 19 compounds. 1982 morning trough FEV1 observations were available, each representing the mean FEV1 for a study arm at a specific timepoint. The final model for absolute FEV1 included baseline, disease progression, placebo effect, and drug effect estimates for all compounds, with interstudy variability on all model components and additional interarm variability on baseline. A dose-response relationship was identifiable for 10 of the 19 compounds. Drug-drug interactions among direct bronchodilators and the effect of concomitant background COPD treatment were included. Covariates were identified on baseline. Disease progression was proportional to the baseline FEV1, and a mean baseline of <1.2 L resulted in a lower efficacy, in particular for antiinflammatory treatments.
  •  
3.
  • Kotani, Naoki, et al. (författare)
  • Population Pharmacokinetics and Exposure-Response Relationships of Astegolimab in Patients With Severe Asthma
  • 2022
  • Ingår i: Journal of clinical pharmacology. - : John Wiley & Sons. - 0091-2700 .- 1552-4604. ; 62:7, s. 905-917
  • Tidskriftsartikel (refereegranskat)abstract
    • Astegolimab is a fully human immunoglobulin G2 monoclonal antibody that binds to the ST2 receptor and blocks the interleukin-33 signaling. It was evaluated in patients with uncontrolled severe asthma in the phase 2b study (Zenyatta) at doses of 70, 210, and 490 mg subcutaneously every 4 weeks for 52 weeks. This work aimed to characterize astegolimab pharmacokinetics, identify influential covariates contributing to its interindividual variability, and make a descriptive assessment of the exposure-response relationships. A population pharmacokinetic model was developed using data from 368 patients in the Zenyatta study. Predicted average steady-state concentration was used in the subsequent exposure-response analyses, which evaluated efficacy (asthma exacerbation rate) and biomarker end points including forced expiratory volume in 1 second, fraction exhaled nitric oxide, blood eosinophils, and soluble ST2. A 2-compartment disposition model with first-order elimination and first-order absorption best described the astegolimab pharmacokinetics. The relative bioavailability for the 70-mg dose was 15.3% lower. Baseline body weight, estimated glomerular filtration rate, and eosinophils were statistically correlated with pharmacokinetic parameters, but only body weight had a clinically meaningful influence on the steady-state exposure (ratios exceeding 0.8-1.25). The exposure-response of efficacy and biomarkers were generally flat with a weak trend in favor of the highest dose/exposure. This study characterized astegolimab pharmacokinetics in patients with asthma and showed typical pharmacokinetic behavior as a monoclonal antibody-based drug. The exposure-response analyses suggested the highest dose tested in the Zenyatta study (490 mg every 4 weeks) performed close to the maximum effect, and no additional response may be expected above it.
  •  
4.
  • Lindbom, Lars, et al. (författare)
  • Perl-speaks-NONMEM (PsN) – a Perl module for NONMEM related programming
  • 2004
  • Ingår i: Computer Methods and Programs in Biomedicine. - : Elsevier BV. - 0169-2607 .- 1872-7565. ; 75:2, s. 85-94
  • Tidskriftsartikel (refereegranskat)abstract
    • The NONMEM program is the most widely used nonlinear regression software in population pharmacokinetic/pharmacodynamic (PK/PD) analyses. In this article we describe a programming library, Perl-speaks-NONMEM (PsN), intended for programmers that aim at using the computational capability of NONMEM in external applications. The library is object oriented and written in the programming language Perl. The classes of the library are built around NONMEM's data, model and output files. The specification of the NONMEM model is easily set or changed through the model and data file classes while the output from a model fit is accessed through the output file class. The classes have methods that help the programmer perform common repetitive tasks, e.g. summarising the output from a NONMEM run, setting the initial estimates of a model based on a previous run or truncating values over a certain threshold in the data file. PsN creates a basis for the development of high-level software using NONMEM as the regression tool.
  •  
5.
  • Ribbing, Jakob, et al. (författare)
  • A model for glucose, insulin, and beta-cell dynamics in subjects with insulin resistance and patients with type 2 diabetes.
  • 2010
  • Ingår i: Journal of clinical pharmacology. - : Wiley. - 1552-4604 .- 0091-2700. ; 50:8, s. 861-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes mellitus (T2DM) is a progressive, metabolic disorder characterized by reduced insulin sensitivity and loss of beta-cell mass (BCM), resulting in hyperglycemia. Population pharmacokinetic-pharmacodynamic (PKPD) modeling is a valuable method to gain insight into disease and drug action. A semi-mechanistic PKPD model incorporating fasting plasma glucose (FPG), fasting insulin, insulin sensitivity, and BCM in patients at various disease stages was developed. Data from 3 clinical trials (phase II/III) with a peroxisome proliferator-activated receptor agonist, tesaglitazar, were used to develop the model. In this, a modeling framework proposed by Topp et al was expanded to incorporate the effects of treatment and impact of disease, as well as variability between subjects. The model accurately described FPG and fasting insulin data over time. The model included a strong relation between insulin clearance and insulin sensitivity, predicted 40% to 60% lower BCM in T2DM patients, and realistic improvements of BCM and insulin sensitivity with treatment. The treatment response on insulin sensitivity occurs within the first weeks, whereas the positive effects on BCM arise over several months. The semi-mechanistic PKPD model well described the heterogeneous populations, ranging from nondiabetic, insulin-resistant subjects to long-term treated T2DM patients. This model also allows incorporation of clinical-experimental studies and actual observations of BCM.
  •  
6.
  • Ribbing, Jakob, 1975- (författare)
  • Covariate Model Building in Nonlinear Mixed Effects Models
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Population pharmacokinetic-pharmacodynamic (PK-PD) models can be fitted using nonlinear mixed effects modelling (NONMEM). This is an efficient way of learning about drugs and diseases from data collected in clinical trials. Identifying covariates which explain differences between patients is important to discover patient subpopulations at risk of sub-therapeutic or toxic effects and for treatment individualization. Stepwise covariate modelling (SCM) is commonly used to this end. The aim of the current thesis work was to evaluate SCM and to develop alternative approaches. A further aim was to develop a mechanistic PK-PD model describing fasting plasma glucose, fasting insulin, insulin sensitivity and beta-cell mass. The lasso is a penalized estimation method performing covariate selection simultaneously to shrinkage estimation. The lasso was implemented within NONMEM as an alternative to SCM and is discussed in comparison with that method. Further, various ways of incorporating information and propagating knowledge from previous studies into an analysis were investigated. In order to compare the different approaches, investigations were made under varying, replicated conditions. In the course of the investigations, more than one million NONMEM analyses were performed on simulated data. Due to selection bias the use of SCM performed poorly when analysing small datasets or rare subgroups. In these situations, the lasso method in NONMEM performed better, was faster, and additionally validated the covariate model. Alternatively, the performance of SCM can be improved by propagating knowledge or incorporating information from previously analysed studies and by population optimal design. A model was also developed on a physiological/mechanistic basis to fit data from three phase II/III studies on the investigational drug, tesaglitazar. This model described fasting glucose and insulin levels well, despite heterogeneous patient groups ranging from non-diabetic insulin resistant subjects to patients with advanced diabetes. The model predictions of beta-cell mass and insulin sensitivity were well in agreement with values in the literature.
  •  
7.
  • Ribbing, Jakob, et al. (författare)
  • Non-Bayesian Knowledge Propagation using Model Model-Based Analysis of Data from Multiple Clinical Studies
  • 2008
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 35:1, s. 117-137
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultimate goal in drug development is to establish the manner of safe and efficacious administration to patients. To achieve this in an efficient way the information contained in the clinical studies should contribute to the increasing pool of accumulated knowledge. The aim of this simulation study is to investigate different knowledge-propagation strategies when the data is analysed using a model-based approach in NONMEM. Pharmacokinetic studies were simulated according to several scenarios of the underlying model and study design, including a population-optimal design based on analysis of a previous study. Five approaches with different degrees of knowledge propagation were investigated: analysing the studies pooled into one dataset, merging the results from analysing the studies separately, fitting a pre-specified model that has been selected from a previous study on either the most recent study or on the pooled dataset, or naively analysing the most recent study without any regards to any previous study. The approaches were evaluated on what model was selected (qualitative knowledge, investigated by stepwise covariate selection within NONMEM) as well as parameter precision (quantitative knowledge) and predictive performance of the model. Pooling all studies into one dataset is the best approach for identifying the correct model and obtaining good predictive performance and merging the results of separate analyses may perform almost as well. Fitting a pre-specified model on new data is fast, without selection bias, and sanctioned for model-based confirmatory analyses. However, fitting the same pre-specified model to all available data is still fast and can be expected to perform better in terms of predictive performance than the unbiased alternative. Using ED-optimal design of sample times and stratification of subjects from different subgroups is a successful strategy which allows sparse sampling and handles prior parameter uncertainty.
  •  
8.
  • Ribbing, Jakob, et al. (författare)
  • Power, Selection Bias and Predictive Performance of the Population Pharmacokinetic Covariate Model
  • 2004
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - 1567-567X .- 1573-8744. ; 31:2, s. 109-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification and quantification of covariate relations is often an important part of population pharmacokinetic/pharmacodynamic (PK/PD) modelling. The covariate model is regularly built in a stepwise manner. With such methods, selection bias may be a problem if only statistically significant covariates are accepted into the model. Competition between multiple covariates may further increase selection bias, especially when there is a moderate to high correlation between the covariates. This can also result in a loss of power to find the true covariates. The aim of this simulation study was to investigate the effect on power, selection bias and predictive performance of the covariate model, when altering study design and system-related quantities. Data sets with 20-1000 subjects were investigated. Five covariates were created by sampling from a multivariate standard normal distribution. The true covariate was set up to have no, low, moderate and high correlation to the other four covariates, respectively. Data sets, in which each individual had two or three PK observations, were simulated using a one-compartment i.v. bolus model. The true covariate influenced clearance according to one of several magnitudes. Different magnitudes of residual error and inter-individual variability in the structural model parameters were also introduced to the simulation model. A total of 7400 replicate data sets were simulated independently for each combination of the above conditions. Models with one of the five simulated covariates influencing clearance and the model without any covariate were fitted to the data. The probability of selecting (according to a pre-specified P-value) the different covariates, along with the estimated covariate coefficient, was recorded. The results show that selection bias is very high for small data sets (< or = 50 subjects) simulated with a weak covariate effect. If selected under these circumstances, the covariate coefficient is on average estimated to be more than twice its true value, making the covariate model useless for predictive purposes. Surprisingly, even though competition from false covariates caused substantial loss in the power of selecting the true covariate, the already high selection bias increased only marginally. This means that the bias due to competition is negligible if statistical significance is also required for covariate selection. Bias and predictive performance are direct functions of power, only indirectly affected by study design and system-related quantities. Mainly because of selection bias, low-powered covariates can be expected to harm the predictive performance when selected. For the same reason these low-powered covariates may falsely appear to be clinically relevant when selected. If the aim of an analysis is predictive modelling, we do not recommend stepwise selection or significance testing of covariates to be performed on small or moderately sized data sets (<50-100 subjects).
  •  
9.
  •  
10.
  • Ribbing, Jakob, et al. (författare)
  • The Lasso – A Novel Method for Predictive Covariate Model Building in Nonlinear Mixed Effects Models
  • 2007
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 34:4, s. 485-517
  • Tidskriftsartikel (refereegranskat)abstract
    • Covariate models for population pharmacokinetics and pharmacodynamics are often built with a stepwise covariate modelling procedure (SCM). When analysing a small dataset this method may produce a covariate model that suffers from selection bias and poor predictive performance. The lasso is a method suggested to remedy these problems. It may also be faster than SCM and provide a validation of the covariate model. The aim of this study was to implement the lasso for covariate selection within NONMEM and to compare this method to SCM. In the lasso all covariates must be standardised to have zero mean and standard deviation one. Subsequently, the model containing all potential covariate–parameter relations is fitted with a restriction: the sum of the absolute covariate coefficients must be smaller than a value, t. The restriction will force some coefficients towards zero while the others are estimated with shrinkage. This means in practice that when fitting the model the covariate relations are tested for inclusion at the same time as the included relations are estimated. For a given SCM analysis, the model size depends on the P-value required for selection. In the lasso the model size instead depends on the value of t which can be estimated using cross-validation. The lasso was implemented as an automated tool using PsN. The method was compared to SCM in 16 scenarios with different dataset sizes, number of investigated covariates and starting models for the covariate analysis. Hundred replicate datasets were created by resampling from a PK-dataset consisting of 721 stroke patients. The two methods were compared primarily on the ability to predict external data, estimate their own predictive performance (external validation), and on the computer run-time. In all 16 scenarios the lasso predicted external data better than SCM with any of the studied P-values (5%, 1% and 0.1%), but the benefit was negligible for large datasets. The lasso cross-validation provided a precise and nearly unbiased estimate of the actual prediction error. On a single processor, the lasso was faster than SCM. Further, the lasso could run completely in parallel whereas SCM must run in steps. In conclusion, the lasso is superior to SCM in obtaining a predictive covariate model on a small dataset or on small subgroups (e.g. rare genotype). Run in parallel the lasso could be much faster than SCM. Using cross-validation, the lasso provides a validation of the covariate model and does not require the user to specify a P-value for selection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy