SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ricardi M) "

Sökning: WFRF:(Ricardi M)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Guninski, R. S., et al. (författare)
  • Efficacy and safety of SBRT for spine metastases : A systematic review and meta-analysis for preparation of an ESTRO practice guideline
  • 2023
  • Ingår i: Radiotherapy and Oncology. - 0167-8140.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Advances in characterizing cancer biology and the growing availability of novel targeted agents and immune therapeutics have significantly changed the prognosis of many patients with metastatic disease. Palliative radiotherapy needs to adapt to these developments. In this study, we summarize the available evidence for stereotactic body radiotherapy (SBRT) in the treatment of spinal metastases. Materials and methods: A systematic review and meta-analysis was performed using PRISMA methodology, including publications from January 2005 to September 2021, with the exception of the randomized phase III trial RTOG-0631 which was added in April 2023. Re-irradiation was excluded. For meta-analysis, a random-effects model was used to pool the data. Heterogeneity was assessed with the I2-test, assuming substantial and considerable as I2 > 50 % and I2 > 75 %, respectively. A p-value < 0.05 was considered statistically significant. Results: A total of 69 studies assessing the outcomes of 7236 metastases in 5736 patients were analyzed. SBRT for spine metastases showed high efficacy, with a pooled overall pain response rate of 83 % (95 % confidence interval [CI] 68 %-94 %), pooled complete pain response of 36 % (95 % CI: 20 %-53 %), and 1-year local control rate of 94 % (95 % CI: 86 %-99 %), although with high levels of heterogeneity among studies (I2 = 93 %, I2 = 86 %, and 86 %, respectively). Furthermore, SBRT was safe, with a pooled vertebral fracture rate of 9 % (95 % CI: 4 %-16 %), pooled radiation induced myelopathy rate of 0 % (95 % CI 0–2 %), and pooled pain flare rate of 6 % (95 % CI: 3 %-17 %), although with mixed levels of heterogeneity among the studies (I2 = 92 %, I2 = 0 %, and 95 %, respectively). Only 1.7 % of vertebral fractures required surgical stabilization. Conclusion: Spine SBRT is characterized by a favorable efficacy and safety profile, providing durable results for pain control and disease control, which is particularly relevant for oligometastatic patients.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Abrevaya, Ximena C., et al. (författare)
  • Protective Effects of Halite to Vacuum and Vacuum-Ultraviolet Radiation : A Potential Scenario during a Young Sun Superflare
  • 2023
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 23:3, s. 245-268
  • Tidskriftsartikel (refereegranskat)abstract
    • Halite (NaCl mineral) has exhibited the potential to preserve microorganisms for millions of years on Earth. This mineral was also identified on Mars and in meteorites. In this study, we investigated the potential of halite crystals to protect microbial life-forms on the surface of an airless body (e.g., meteorite), for instance, during a lithopanspermia process (interplanetary travel step) in the early Solar System. To investigate the effect of the radiation of the young Sun on microorganisms, we performed extensive simulation experiments by employing a synchrotron facility. We focused on two exposure conditions: vacuum (low Earth orbit, 10-4 Pa) and vacuum-ultraviolet (VUV) radiation (range 57.6-124 nm, flux 7.14 W/m2), with the latter representing an extreme scenario with high VUV fluxes comparable to the amount of radiation of a stellar superflare from the young Sun. The stellar VUV parameters were estimated by using the very well-studied solar analog of the young Sun, κ1 Cet. To evaluate the protective effects of halite, we entrapped a halophilic archaeon (Haloferax volcanii) and a non-halophilic bacterium (Deinococcus radiodurans) in laboratory-grown halite. Control groups were cells entrapped in salt crystals (mixtures of different salts and NaCl) and non-trapped (naked) cells, respectively. All groups were exposed either to vacuum alone or to vacuum plus VUV. Our results demonstrate that halite can serve as protection against vacuum and VUV radiation, regardless of the type of microorganism. In addition, we found that the protection is higher than provided by crystals obtained from mixtures of salts. This extends the protective effects of halite documented in previous studies and reinforces the possibility to consider the crystals of this mineral as potential preservation structures in airless bodies or as vehicles for the interplanetary transfer of microorganisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy