SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Richmond Michael) "

Search: WFRF:(Richmond Michael)

  • Result 1-10 of 49
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Birney, Ewan, et al. (author)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Journal article (peer-reviewed)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
2.
  • van Kuilenburg, Andre B. P., et al. (author)
  • Glutaminase Deficiency Caused by Short Tandem Repeat Expansion in GLS
  • 2019
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 380:15, s. 1433-1441
  • Journal article (peer-reviewed)abstract
    • We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5′ untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.
  •  
3.
  • Zhou, Wei, et al. (author)
  • Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease
  • 2022
  • In: Cell Genomics. - : Elsevier. - 2666-979X. ; 2:10
  • Journal article (peer-reviewed)abstract
    • Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.
  •  
4.
  • Beaumont, Robin N, et al. (author)
  • Genome-wide association study of offspring birth weight in 86,577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.
  • 2018
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 1460-2083 .- 0964-6906. ; 27:4, s. 742-756
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) of birth weight have focused on fetal genetics, while relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86,577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5x10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
  •  
5.
  • Nounu, Aayah, et al. (author)
  • A combined proteomics and mendelian randomization approach to investigate the effects of aspirin-targeted proteins on colorectal cancer
  • 2021
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : Elsevier. - 1055-9965 .- 1538-7755. ; 30:3, s. 564-575
  • Journal article (peer-reviewed)abstract
    • Background: Evidence for aspirin’s chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk.Methods: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N ¼ 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N ¼ 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls).Results: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03–1.13; OR: 3.33, 95% CI, 2.46–4.50; and OR: 1.15, 95% CI, 1.02–1.29, respectively).Conclusions: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin’s reduction of metastasis.Impact: Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
  •  
6.
  • Nounu, Aayah, et al. (author)
  • Salicylic Acid and Risk of Colorectal Cancer : A Two-Sample Mendelian Randomization Study
  • 2021
  • In: Nutrients. - : MDPI. - 2072-6643. ; 13:11
  • Journal article (peer-reviewed)abstract
    • Salicylic acid (SA) has observationally been shown to decrease colorectal cancer (CRC) risk. Aspirin (acetylsalicylic acid, that rapidly deacetylates to SA) is an effective primary and secondary chemopreventive agent. Through a Mendelian randomization (MR) approach, we aimed to address whether levels of SA affected CRC risk, stratifying by aspirin use. A two-sample MR analysis was performed using GWAS summary statistics of SA (INTERVAL and EPIC-Norfolk, N = 14,149) and CRC (CCFR, CORECT, GECCO and UK Biobank, 55,168 cases and 65,160 controls). The DACHS study (4410 cases and 3441 controls) was used for replication and stratification of aspirin-use. SNPs proxying SA were selected via three methods: (1) functional SNPs that influence the activity of aspirin-metabolising enzymes; (2) pathway SNPs present in enzymes' coding regions; and (3) genome-wide significant SNPs. We found no association between functional SNPs and SA levels. The pathway and genome-wide SNPs showed no association between SA and CRC risk (OR: 1.03, 95% CI: 0.84-1.27 and OR: 1.08, 95% CI: 0.86-1.34, respectively). Results remained unchanged upon aspirin use stratification. We found little evidence to suggest that an SD increase in genetically predicted SA protects against CRC risk in the general population and upon stratification by aspirin use.
  •  
7.
  • Wahl, Simone, et al. (author)
  • Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  • 2017
  • In: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7635, s. 81-
  • Journal article (peer-reviewed)abstract
    • Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type (2) diabetes, cardiovascular disease and related metabolic and inflammatory disturbances(1,2). Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation(3-6), a key regulator of gene expression and molecular phenotype(7). Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
  •  
8.
  • Young, William J., et al. (author)
  • Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease. The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
  •  
9.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
10.
  • Abdel-Magied, Ahmed, et al. (author)
  • Diastereomeric control of enantioselectivity: evidence for metal cluster catalysis.
  • 2014
  • In: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X. ; 50:57, s. 7705-7708
  • Journal article (peer-reviewed)abstract
    • Enantioselective hydrogenation of tiglic acid effected by diastereomers of the general formula [(μ-H)2Ru3(μ3-S)(CO)7(μ-P-P*)] (P-P* = chiral Walphos diphosphine ligand) strongly supports catalysis by intact Ru3 clusters. A catalytic mechanism involving Ru3 clusters has been established by DFT calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 49
Type of publication
journal article (48)
Type of content
peer-reviewed (47)
other academic/artistic (1)
Author/Editor
Richmond, Michael G (22)
Nordlander, Ebbe (21)
Rahaman, Ahibur (9)
Hogarth, Graeme (9)
Haukka, Matti (8)
Ghosh, Shishir (7)
show more...
Kabir, Shariff E (6)
Lisensky, George C (6)
Nichol, Robert C. (5)
Schneider, Donald P. (5)
Richmond, Rebecca C. (5)
Marriner, John (5)
Hrovat, David A. (5)
Sollerman, Jesper (4)
Relton, Caroline L (4)
Smith, Mathew (4)
Tocher, Derek A (4)
Sako, Masao (4)
Bassett, Bruce (4)
Cinabro, David (4)
Frieman, Joshua A. (4)
Richmond, Michael W. (4)
Doi, Mamoru (4)
Morokuma, Tomoki (4)
Dilday, Ben (3)
Jha, Saurabh W. (3)
McCarthy, Mark I (3)
Campbell, A (3)
Spector, Tim D. (3)
Wilson, JF (3)
Kessler, Richard (3)
Foley, Ryan J. (3)
Schafmayer, Clemens (3)
Hayward, C. (3)
Perola, M. (3)
Porteous, DJ (3)
Hofman, Albert (3)
Medland, Sarah E (3)
Hossain, Kamal (3)
Richmond, Michael (3)
Kanai, M (3)
Contreras, Milena (3)
Van Hout, Elien (3)
Farquhar, Morag (3)
Gould, Rebecca L. (3)
Hornberger, Michael (3)
Richmond, Erica (3)
Kishita, Naoko (3)
Costas, Miquel (3)
Basak-Modi, Sucharit ... (3)
show less...
University
Lund University (22)
Uppsala University (14)
Stockholm University (7)
Karolinska Institutet (6)
Umeå University (4)
University of Gothenburg (2)
show more...
Royal Institute of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (49)
Research subject (UKÄ/SCB)
Natural sciences (32)
Medical and Health Sciences (12)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view