SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ridderstråle Yvonne) "

Sökning: WFRF:(Ridderstråle Yvonne)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Marlene, et al. (författare)
  • Carbonic Anhydrase Generates CO2 and H+ That Drive Spider Silk Formation Via Opposite Effects on the Terminal Domains
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 12:8, s. e1001921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive beta-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO(2)) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.
  •  
2.
  • Andersson, Marlene, et al. (författare)
  • Morphology and Composition of the Spider Major Ampullate Gland and Dragline Silk
  • 2013
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 14, s. 2945-2952
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk is made of unique proteins-spidroins-secreted and stored as a protein solution (dope) in specialized glands. The major ampullate gland, source of the dragline silk, is composed of a tail, a sac and an elongated duct. For this gland, several different types of epithelial cells and granules have been described, but it is largely unknown how they correlate with spidroin production. It is also not settled what parts of the large spidroins end up in the final silk, and it has been suggested that the N-terminal domain (NT) is lacking. Here we show that NT is present in the dope and throughout drag,line silk fibers, including the skin layer, and that the major ampullate tail and sac consist of three different and sharply demarcated zones (A-C), each with a distinct epithelial cell type. Finally, we show that spidroins are produced in the A and B zone epithelia, while the C zone granules lack spidroins.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Gunnarsson, David, et al. (författare)
  • Effects of dietary phytoestrogens on plasma testosterone and triiodothyronine (T3) levels in male goat kids
  • 2009
  • Ingår i: Acta Veterinaria Scandinavica. - : Springer Science and Business Media LLC. - 0044-605X .- 1751-0147. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exposure to xenoestrogens in humans and animals has gained increasing attention due to the effects of these compounds on reproduction. The present study was undertaken to investigate the influence of low-dose dietary phytoestrogen exposure, i.e. a mixture of genistein, daidzein, biochanin A and formononetin, on the establishment of testosterone production during puberty in male goat kids. METHODS: Goat kids at the age of 3 months received either a standard diet or a diet supplemented with phytoestrogens (3-4 mg/kg/day) for approximately 3 months. Plasma testosterone and total and free triiodothyronine (T3) concentrations were determined weekly. Testicular levels of testosterone and cAMP were measured at the end of the experiment. Repeated measurement analysis of variance using the MIXED procedure on the generated averages, according to the Statistical Analysis System program package (Release 6.12, 1996, SAS Institute Inc., Cary, NC, USA) was carried out. RESULTS: No significant difference in plasma testosterone concentration between the groups was detected during the first 7 weeks. However, at the age of 5 months (i.e. October 1, week 8) phytoestrogen-treated animals showed significantly higher testosterone concentrations than control animals (37.5 nmol/l vs 19.1 nmol/l). This elevation was preceded by a rise in plasma total T3 that occurred on September 17 (week 6). A slightly higher concentration of free T3 was detected in the phytoestrogen group at the same time point, but it was not until October 8 and 15 (week 9 and 10) that a significant difference was found between the groups. At the termination of the experiment, testicular cAMP levels were significantly lower in goats fed a phytoestrogen-supplemented diet. Phytoestrogen-fed animals also had lower plasma and testicular testosterone concentrations, but these differences were not statistically significant. CONCLUSION: Our findings suggest that phytoestrogens can stimulate testosterone synthesis during puberty in male goats by increasing the secretion of T3; a hormone known to stimulate Leydig cell steroidogenesis. It is possible that feedback signalling underlies the tendency towards decreased steroid production at the end of the experiment.
  •  
7.
  •  
8.
  •  
9.
  • Holm, Lena, et al. (författare)
  • Embryonic exposure to o,p'-DDT causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen
  • 2006
  • Ingår i: Environmental Toxicology and Chemistry. - 0730-7268 .- 1552-8618. ; 25:10, s. 2787-2793
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism for contaminant-induced eggshell thinning in wild birds remains to be clarified. It is generally assumed, however, that it results from exposure of the adult laying female. We have reported that embryonic exposure to the synthetic estrogen ethynylestradiol (EE2) results in eggshell thinning in the domestic hen. The objective of this study was to investigate whether eggshell thinning can be induced following in ovo exposure to a bioaccumulating estrogenic environmental contaminant, o,p '-DDT. Ethynylestradiol was used as a positive control. Domestic hens exposed in ovo to o,p '-DDT (37 or 75 mu g/g egg) or EE2 (60 ng/g egg) laid eggs with thinner shells than the control birds. The hens from these exposure groups also had a significantly reduced frequency of shell gland capillaries with carbonic anhydrase (CA) activity, a key enzyme in eggshell formation. The decreased number of capillaries with CA activity suggests that a developmentally induced disruption of CA expression in the shell gland was involved in the eggshell thinning found in this study. Egg laying was not affected in hens exposed embryonically to 37 or 75 mu g o,p '-DDT/g egg, whereas it was inhibited in hens exposed to higher doses. Decreased lengths of the left oviduct and its infundibulum were seen after embryonic treatment with o,p '-DDT or EE2. In addition, o,p '-DDT exposure resulted in right oviduct retention. The results support our hypothesis that eggshell thinning in avian wildlife can result from a functional malformation in the shell gland, induced by embryonic exposure to estrogenic substances.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy