SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ridha Hussein Mohammed) "

Sökning: WFRF:(Ridha Hussein Mohammed)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alawsi, Mustafa A., et al. (författare)
  • Tuning ANN Hyperparameters by CPSOCGSA, MPA, and SMA for Short-Term SPI Drought Forecasting
  • 2022
  • Ingår i: Atmosphere. - : MDPI. - 2073-4433. ; 13:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Modelling drought is vital to water resources management, particularly in arid areas, to reduce its effects. Drought severity and frequency are significantly influenced by climate change. In this study, a novel hybrid methodology was built, data preprocessing and artificial neural network (ANN) combined with the constriction coefficient-based particle swarm optimisation and chaotic gravitational search algorithm (CPSOCGSA), to forecast standard precipitation index (SPI) based on climatic factors. Additionally, the marine predators algorithm (MPA) and the slime mould algorithm (SMA) were used to validate the performance of the CPSOCGSA algorithm. Climatic factors data from 1990 to 2020 were employed to create and evaluate the SPI 1, SPI 3, and SPI 6 models for Al-Kut City, Iraq. The results indicated that data preprocessing methods improve data quality and find the best predictors scenario. The performance of CPSOCGSA-ANN is better than MPA-ANN and SMA-ANN algorithms based on various statistical criteria (i.e., R2, MAE, and RMSE). The proposed methodology yield R2 = 0.93, 0.93, and 0.88 for SPI 1, SPI 3, and SPI 6, respectively.
  •  
2.
  • Khudhair, Zahraa S., et al. (författare)
  • A CPSOCGSA-tuned neural processor for forecasting river water salinity: Euphrates river, Iraq
  • 2022
  • Ingår i: Cogent Engineering. - : Taylor & Francis Group. - 2331-1916. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Salinity is a classic problem in water quality management since it is directly associated with low water quality indices. Debate continues about selecting the best model for water quality forecasting, it remains a major challenge and causes much uncertainty. Accordingly, identifying the optimal modelling that can capture the salinity behaviour is becoming a common trend in recent water quality research. This study applies novel combined techniques, including data pre-processing and artificial neural network (ANN) optimised with constriction coefficient-based particle swarm optimisation and chaotic gravitational search algorithm (CPSOCGSA) to forecast monthly salinity data. Historical monthly total dissolved solids (TDS) and electrical conductivity (EC) data of the Euphrates River at Al-Musayyab, Babylon, and climatic factors from 2010 to 2019 were used to build and validate the methodology. Additionally, for more validation, the CPSOCGSA-ANN was compared with the slime mould algorithm (SMA-ANN), particle swarm optimisation (PSO-ANN) and multi-verse optimiser (MVO-ANN). The results reveal that the pre-processing data approaches improved data quality and selected the best predictors’ scenario. The CPSOCGSA-ANN algorithm is the best based on several statistical criteria. The proposed methodology accurately simulated the TDS and EC time series based on R2 = 0.99 and 0.97, respectively, and SI = 0.003 for both parameters.
  •  
3.
  • Mohammed, Sarah J., et al. (författare)
  • Application of Metaheuristic Algorithms and ANN Model for Univariate Water Level Forecasting
  • 2023
  • Ingår i: Advances in Civil Engineering / Hindawi. - : Hindawi Publishing Corporation. - 1687-8086 .- 1687-8094.
  • Tidskriftsartikel (refereegranskat)abstract
    • With the rapid development of machine learning (ML) models, the artificial neural network (ANN) is being increasingly applied for forecasting hydrological processes. However, researchers have not treated hybrid ML models in much detail. To address these issues, this study herein suggests a novel methodology to forecast the monthly water level (WL) based on multiple lags of the Tigris River in Al-Kut, Iraq, over ten years. The methodology includes preprocessing data methods, and the ANN model optimises with a marine predator algorithm (MPA). In the optimisation procedure, to decrease uncertainty and expand the predicting range, the slime mould algorithm (SMA-ANN), constriction coefficient-based particle swarm optimisation and chaotic gravitational search algorithms (CPSOCGSA-ANN), and particle swarm optimisation (PSO-ANN) are applied to compare and validate the MPA-ANN model performance. Analysis of results revealed that the data pretreatment methods improved the original data quality and selected the ideal predictors’ scenario by singular spectrum analysis and mutual information methods, respectively. For example, the correlation coefficient of the first lag improved from 0.648 to 0.938. Depending on various evaluation metrics, MPA-ANN tends to forecast WL better than SMA-ANN, PSO-ANN, and CPSOCGSA-ANN algorithms with coefficients of determination of 0.94, 0.81, 0.85, and 0.90, respectively. Evidence shows that the proposed methodology yields excellent results, with a scatter index equal to 0.002. The research outcomes represent an additional step towards evolving various hybrid ML techniques, which are valuable to practitioners wishing to forecast WL data and the management of water resources in light of environmental shifts.
  •  
4.
  • Mohammed, Sarah J., et al. (författare)
  • Hybrid Technique to Improve the River Water Level Forecasting Using Artificial Neural Network-Based Marine Predators Algorithm
  • 2022
  • Ingår i: Advances in Civil Engineering / Hindawi. - : Hindawi Publishing Corporation. - 1687-8086 .- 1687-8094. ; 2022
  • Tidskriftsartikel (refereegranskat)abstract
    • Water level (WL) forecasting has become a difficult undertaking due to spatiotemporal fluctuations in climatic factors and complex physical processes. This paper proposes a novel hybrid machine learning model based on an artificial neural network (ANN) and the Marine Predators algorithm (MPA) for modeling monthly water levels of the Tigris River in Al-Kut, Iraq. Data preprocessing techniques are employed to enhance data quality and determine the optimal input model. Historical data for water level and climatic factors data are utilized from 2011 to 2020 to build and assess the model. MPA-ANN algorithm’s performance is compared with recent constriction coefficient-based particle swarm optimization and chaotic gravitational search algorithm (CPSOCGSA-ANN) and slime mold algorithm (SMA-ANN) to reduce uncertainty and raise the prediction range. The finding demonstrated that singular spectrum analysis is a highly effective method to denoise time series. MPA-ANN outperformed CPSOCGSA-ANN and SMA-ANN algorithms based on different statistical criteria. The suggested novel methodology offers good results with scatter index (SI) = 0.0009 and coefficient of determination (R2 = 0.98).
  •  
5.
  • Zubaidi, Salah L., et al. (författare)
  • Assessing the Benefits of Nature-Inspired Algorithms for the Parameterization of ANN in the Prediction of Water Demand
  • 2023
  • Ingår i: Journal of water resources planning and management. - : American Society of Civil Engineers (ASCE). - 0733-9496 .- 1943-5452. ; 149:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate forecasting techniques for a stochastic pattern of water demand are essential for any city that faces high variability in climate factors and a shortage of water resources. This study was the first research to assess the impact of climatic factors on urban water demand in Iraq, which is one of the hottest countries in the world. We developed a novel forecasting methodology that includes data preprocessing and an artificial neural network (ANN) model, which we integrated with a recent nature-inspired metaheuristic algorithm [marine predators algorithm (MPA)]. The MPA-ANN algorithm was compared with four nature-inspired metaheuristic algorithms. Nine climatic factors were examined with different scenarios to simulate the monthly stochastic urban water demand over 11 years for Baghdad City, Iraq. The results revealed that (1) precipitation, solar radiation, and dew point temperature are the most relevant factors; (2) the ANN model becomes more accurate when it is used in combination with the MPA; and (3) this methodology can accurately forecast water demand considering the variability in climatic factors. These findings are of considerable significance to water utilities in planning, reviewing, and comparing the availability of freshwater resources and increasing water requests (i.e., adaptation variability of climatic factors). 
  •  
6.
  • Kareem, Baydaa Abdul, et al. (författare)
  • Applicability of ANN Model and CPSOCGSA Algorithm forMulti-Time Step Ahead River Streamflow Forecasting
  • 2022
  • Ingår i: Hydrology. - : MDPI. - 2306-5338. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate streamflow prediction is significant when developing water resource management and planning, forecasting floods, and mitigating flood damage. This research developed a novel methodology that involves data pre-processing and an artificial neural network (ANN) optimised with the coefficient-based particle swarm optimisation and chaotic gravitational search algorithm (CPSOCGSA-ANN) to forecast the monthly water streamflow. The monthly streamflow data of the Tigris River at Amarah City, Iraq, from 2010 to 2020, were used to build and evaluate the suggested methodology. The performance of CPSOCGSA was compared with the slim mold algorithm (SMA) and marine predator algorithm (MPA). The principal findings of this research are that data pre-processing effectively improves the data quality and determines the optimum predictor scenario. The hybrid CPSOCGSA-ANN outperformed both the SMA-ANN and MPA-ANN algorithms. The suggested methodology offered accurate results with a coefficient of determination of 0.91, and 100% of the data were scattered between the agreement limits of the Bland–Altman diagram. The research results represent a further step toward developing hybrid models in hydrology applications.
  •  
7.
  • Khairan, Hadeel E., et al. (författare)
  • Examination of Single- and Hybrid-Based Metaheuristic Algorithms in ANN Reference Evapotranspiration Estimating
  • 2023
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 15:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrological resource management, including crop watering and irrigation scheduling, relies on reliable estimates of reference evapotranspiration (ETo). However, previous studies of forecasting ETo have not dealt with comparing single and hybrid metaheuristic algorithms in much detail. This study aims to assess the efficiency of a novel methodology to simulate univariate monthly ETo estimates using an artificial neural network (ANN) integrated with the hybrid particle swarm optimisation–grey wolf optimiser algorithm (PSOGWO). Several state-of-the-art algorithms, including constriction coefficient-based particle swarm optimisation and chaotic gravitational search algorithms (CPSOCGSA), the slime mould algorithm (SMA), the marine predators algorithm (MPA) and the modified PSO algorithm were used to evaluate PSOGWO’s prediction accuracy. Monthly meteorological data were collected in Al-Kut City (1990 to 2020) and used for model training, testing and validation. The results indicate that pre-processing techniques can improve raw data quality and may also suggest the best predictors scenario. That said, all models can be considered efficient with acceptable simulation levels. However, the PSOGWO-ANN model slightly outperformed the other techniques based on several statistical tests (e.g., a coefficient of determination of 0.99). The findings can contribute to better management of water resources in Al-Kut City, an agricultural region that produces wheat in Iraq and is under the stress of climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy